
hera pspec Power Spectrum Normalization

pspec team

June 4, 2018

Abstract

We derive the power spectrum normalization scalar that relates the

dimensionality of the output of hera pspec.oqe module to the dimen-

sionality of the input data. This is derived for the numerical routines as

they appear in hera pspec under GIT hash .

1 Conversion from Jy to mK

An interferometric visibility is inherently in units of Jansky (10�23 ergs sec�1

cm�2 Hz�1). Visibilities measured by a correlator will almost always be cali-
brated to a Jansky scale, meaning that after calibration our visibilities will still
be in units of Jansky. To convert them to units of milli-Kelvin, we use the
definition of the brightness temperature from the Rayleigh-Jeans Law:

I⌫ =
2⌫2kbTb

c2
=

2kbTb

�2

(1)

where I is in units of specific intensity (ergs sec�1 cm�2 Hz�1 steradians�1)
and T is in units of Kelvin. This, however, is a mapping from specific intensity
to temperature. What we require is a mapping from Jansky (flux density)
to temperature, which we can accomplish by first mapping Jansky to specific
intensity. This is done by dividing by the integral of the beam power response,
commonly referred to as ⌦p in the literature:

⌦p(⌫) =

Z

4⇡
d⌦ A(ŝ, ⌫) (2)

where A is unitless, direction-dependent scalar normalized to unity at boresight,
and ⌦p carries units of radians2 or steradians.

To summarize, the full conversion from a visibility on a Jansky scale to a
visibilty on a mK scale is

V
mK

(�) = V
Jy

(�)10�23

�2

2kb⌦p(�)
103, (3)

where the 10�23 comes from converting Jansky to flux density in ergs sec�1

cm�2 Hz�1, and the 103 comes from the Kelvin to milli-Kelvin conversion.

1

by Adrian Liu and the HERA

2 Normalization conventions in the quadratic

estimator

Once we have performed the unit conversions outlined in the previous section,
our measurement equation is

Vb(⌫) =
�(⌫)

⌦p(⌫)

Z
d⌦ T (n̂, ⌫) A(n̂, ⌫) e�i

2⇡b·n̂
� , (4)

where d⌦ is a di↵erential solid angle in steradians, T is the brightness temper-
ature on the sky, and A is the primary beam. The (optional) function �(⌫) is
some tapering function (e.g., Blackman-Harris) that can be imposed by the data
analyst. For the purposes of deriving the normalization conventions, there is
no di↵erence between invoking the flat-sky approximation and a full curved-sky
treatment. Taking the flat-sky limit, we can say

Vb(⌫) =
�(⌫)

⌦p(⌫)

Z
d2✓T (✓, ⌫)A(✓, ⌫) e�i2⇡ub·✓, (5)

where we have also defined ub ⌘ b/�. Henceforth we will neglect the frequency
dependence of ub, which is tantamount to ignoring “wedge physics”. This also
has no e↵ect on the normalizations. For later convenience, we can also write
this relation in Fourier space so that

Vb(⌫) =

Z
d⌘d2u

�(⌫)

⌦p(⌫)
eT (u, ⌘) eA(ub � u, ⌫)ei2⇡⌘⌫ , (6)

where ⌘ is the Fourier dual to ⌫, u is the Fourier dual to ✓, and

eT (u, ⌘) ⌘
Z

d2✓d⌫e�i2⇡u·✓e�i2⇡⌘⌫T (✓, ⌫), (7)

with eA similarly defined as the Fourier transform of A.
We first define a power spectrum P in “observer units”. This power spec-

trum does not depend on cosmological parameters, and is therefore a helpful
intermediate quantity. This power spectrum is defined by the relation

h eT (u, ⌘) eT ⇤(u0, ⌘0)i ⌘ �D(u� u

0)�D(⌘ � ⌘0)P (u, ⌘), (8)

where h· · · i signifies an ensemble average and �D represents a Dirac delta func-
tion. This definition of P agrees with how one would define a “naive delay
spectrum” for an instrument with a tophat primary beam.

The basic building block of the quadratic estimator is the covariance matrix
C ⌘ hxx†i of our data x. If each element of the vector is a di↵erent frequency
channel of a single baseline’s visibility, then the components of the covariance
matrix are given by

Cij ⌘ hVb(⌫i)V
⇤
b (⌫j)i

=

Z
d⌘d2uP (u, ⌘)ei2⇡⌘(⌫i�⌫j) eA(ub � u, ⌫i) eA⇤(ub � u, ⌫j)

�(⌫i)

⌦p(⌫i)

�(⌫j)

⌦p(⌫j)
. (9)

2

We now make two approximations. The first is that the primary beam is fairly
broad, so that the eA is compact as a function of u. This means that the integral
receives most of its contribution from u ⇡ ub, and we can evaluate P (u, ⌘)
there, factoring it out of the integral:

Cij ⇡
Z

d⌘P (ub, ⌘)e
i2⇡⌘(⌫i�⌫j)

Z
d2u eA(ub�u, ⌫i) eA⇤(ub�u, ⌫j)

�(⌫i)

⌦p(⌫i)

�(⌫j)

⌦p(⌫j)
.

(10)
Next we assume that P is piecewise constant over some discrete bins in ⌘, which
gives

Cij ⇡
X

↵

P↵

Z

⌘↵

d⌘ei2⇡⌘(⌫i�⌫j)

Z
d2u eA(ub � u, ⌫i) eA⇤(ub � u, ⌫j)

�(⌫i)

⌦p(⌫i)

�(⌫j)

⌦p(⌫j)

⇡
X

↵

P↵�⌘ei2⇡⌘↵(⌫i�⌫j)

Z
d2u eA(ub � u, ⌫i) eA⇤(ub � u, ⌫j)

�(⌫i)

⌦p(⌫i)

�(⌫j)

⌦p(⌫j)

⇡
X

↵

P↵�⌘ei2⇡⌘↵(⌫i�⌫j)

Z
d2✓A(✓, ⌫i)A(✓, ⌫j)

�(⌫i)

⌦p(⌫i)

�(⌫j)

⌦p(⌫j)
(11a)

⌘
X

↵

P↵Q
↵
ij . (11b)

The matrix Q

↵ is defined as @C/@P↵, and encodes the response of the data
covariance to the ↵th bandpower P↵. It is the bridge between the input vector
space that data vectors inhabit and the output vector space that bandpowers
inhabit.

The quadratic estimator formalism instructs us to form an estimate of the
power spectrum bandpowers by first computing

q̂↵ ⌘ 1

2
x

†
Q

↵
x. (12)

Taking the expectation value of this gives

hq̂↵i =
1

2
tr (Q↵

C) =
1

2

X

�

tr
�
Q

↵
Q

�
�
P � . (13)

This shows that on average, q̂↵ measures a weighted sum of a true bandpowers.
To arrive at a properly normalized power spectrum, the weights of the sum must
add to unity. Alternatively, we can simply divide our estimator with the sum
of our weights, obtaining

bP↵ =
x

†
Q

↵
xP

� tr (Q
↵
Q

�)
. (14)

If we computed our power spectra in this way, our answers would be automati-
cally normalized by construction. However, this is not what we typically do in
our power spectrum pipelines. Instead of comparing Equations (11a) and (11b)

3

to obtain the Q

↵ that is inserted into Equation (12), we observe that the main
function of Q↵ is to Fourier transform the two data vectors that act on it and
define

Q

alt,↵
ij ⌘ Dei2⇡⌘↵(⌫i�⌫j), (15)

where D is some constant that we can pick later. We then insert this into our
quadratic form in place of Q↵ so that

q̂alt↵ ⌘ 1

2
x

†
Q

alt,↵
x, (16)

which has an expectation value of

hq̂↵i =
1

2
tr
�
Q

alt,↵
C

�
=

1

2

X

�

tr
�
Q

alt,↵
Q

�
�
P � . (17)

With this expression, one would normally write an estimator of the form

bP
alt

↵ =
x

†
Q

alt,↵
xP

� tr (Q
alt,↵

Q

�)
. (18)

It turns out that this still isn’t what’s done in the code! Instead, the code simply
assumes that it is correct to replace Q

↵ with every instance of Qalt,↵ (ignoring
the fact that Equation 17, for instance, hasQ↵ andQ

alt,↵ serving distinct roles).
To compensate for the fact that this is incorrect, a final normalization factor
is inserted, so that our expression becomes

bP
code

↵ =
x

†
Q

alt,↵
x

P

� tr (Q
alt,↵

Q

alt,�)
. (19)

Comparing the expression for bP
alt

↵ with the expression for bP
code

↵ , we see that
bP
code

↵ will only give correctly normalized power spectra if

X

�

tr
�
Q

alt,↵
Q

alt,�
�
=

X

�

tr
�
Q

alt,↵
Q

�
�
. (20)

We may use this to solve for the correct and/or D. (There is some freedom
as to where one inserts the correction factors). Evaluating the LHS, we have

X

�

tr
�
Q

alt,↵
Q

alt,�
�

=
X

�ij

Q

alt,↵
ij Q

alt,�
ji = D2

X

�ij

ei2⇡⌘↵(⌫i�⌫j)ei2⇡⌘�(⌫j�⌫i)

= D2N
freq

X

ij

ei2⇡⌘↵(⌫i�⌫j)�ij = D2N2

freq

, (21)

where in evaluating the sum over �, we used the symmetries of the discrete
Fourier transform to say that

P
� e

i2⇡⌘�(⌫j�⌫i) = N
freq

�ij . The RHS evaluates

4

to
X

�

tr
�
Q

alt,↵
Q

�
�

=
X

�ij

Q

alt,↵
ij Q

�
ji

= D�⌘
X

�ij

ei2⇡⌘↵(⌫i�⌫j)ei2⇡⌘�(⌫j�⌫i)

Z
d2✓A(✓, ⌫j)A(✓, ⌫i)

= D�⌘N
freq

X

ij

ei2⇡⌘↵(⌫i�⌫j)�ij

Z
d2✓A(✓, ⌫i)A(✓, ⌫j)

�(⌫i)

⌦p(⌫i)

�(⌫j)

⌦p(⌫j)

= D�⌘N
freq

X

i

�2(⌫i)

⌦2

p(⌫i)

Z
d2✓A2(✓, ⌫i). (22)

Equating the two expressions then gives

D = �⌘
1

N
freq

X

i

�2(⌫i)

⌦2

p(⌫i)

Z
d2✓A(✓, ⌫i)

2. (23)

Now, for a numerical FFT, �⌘ = 1/B and N
freq

= B/�⌫. Thus, one obtains

D =
1

B2

X

i

�⌫
�2(⌫i)

⌦2

p(⌫i)

Z
d2✓A(✓, ⌫i)

2 ⇡ 1

B2

Z
d⌫

�2(⌫)

⌦2

p(⌫)

Z
d2✓A(✓, ⌫)2.

(24)
This is precisely the form of the “usual” power spectrum scalar (minus the cos-
mological scalings), as defined in previous memos. Since and D are complete
degenerate here, one can choose for simplicity to set D = 1. This is what is
done in the code.

Note that if we write out the form of our estimator, we have

bP
code

↵ =

P
ij e

i2⇡⌘↵(⌫i�⌫j)Vb(⌫j)V ⇤
b (⌫i)

N2

freq

=
1

�����
1

N
freq

X

i

ei2⇡⌘↵⌫iV ⇤
b (⌫i)

�����

2

. (25)

This proves a piece of lore from before—that a correctly normalized power
spectrum estimate can be obtained by using a inverse Fourier transform (which
divides by N

freq

under numpy’s Fourier convention) on complex conjugated data,
squaring, and then dividing by .

The thoroughly confusing aspect about this is that in the hera pspec.oqe

module, one does not see any inverse Fourier transforms. This is because Equa-
tion (15) is the forward Fourier transform (i.e., without the factor of N

freq

) if
D = 1, so the use fft option of the get Q function implements it as such. What
ends up happening is that the normalization factor ends up being proportional
to 1/N2

freq

, which e↵ectively converts the forward Fourier transforms into inverse
Fourier transforms (up to a complex conjugation).

Note that if we had wanted, we could’ve set D = 1/N2

freq

so that x

†
Q

↵
x

corresponds to an inverse FFT. Following the mathematics through, the denom-
inator of Equation (19) then just reduces to only the power spectrum scalar, so
everything is consistent.

5

3 Window functions

Taking the ensemble average of Equation (19), one can show that

hbP
code

↵ i =
P

� tr
�
Q

alt,↵
Q

�
�
P �

P

� tr (Q
alt,↵

Q

alt,�)
. (26)

This means that the window functions are given by

W↵� =
tr
�
Q

alt,↵
Q

�
�

P

� tr (Q
alt,↵

Q

alt,�)
. (27)

4 What if there are weighting matrices?

In general, one can imagine a more general estimator that weights the data,
such that we have

q̂alt↵ ⌘ 1

2
x

†
R

1

Q

alt,↵
R

2

x (28)

rather than Equation (16). When one uses non-trivial (i.e., non-identity) weight-
ing matrices like this, the code ends up forming

bP
code

↵ =
x

†
R

1

Q

alt,↵
R

2

x

P

� tr (R1

Q

alt,↵
R

2

Q

alt,�)
. (29)

Going through the same exercise as before, we need to make sure that this is
equal to

bP
alt

↵ =
x

†
R

1

Q

alt,↵
R

2

xP
� tr (R1

Q

alt,↵
R

2

Q

�)
. (30)

Equating these, we end up with

 =

P
� tr

�
R

1

Q

alt,↵
R

2

Q

�
�

P
� tr (R1

Q

alt,↵
R

2

Q

alt,�)
. (31)

For general R
1

, R
2

, tapers, and primary beams, this will not reduce to a simple
scalar independent of ↵, R

1

and R

2

. Being able to normalize out the primary
beam e↵ects, tapers, etc. with a scalar only works if

• R

1

= R

2

= I. This is the limiting case from the previous section.

OR

• No tapering function is used (i.e., �(⌫) = 1) and the primary beams can
be approximated as being frequency-independent.

There is one further case where the scalar is independent of ↵ (though still
dependent on R

1

and R

2

). This is when R

1

and R

2

are both diagonal. Suppose

R
1,ij ⌘ r

(1)

i �ij and similarly for R
2

. Then reduces to

 =
1

B

P
i r

(1)

i r
(2)

i �2(⌫i)
R
d2✓A(✓, ⌫)2/⌦2

p(⌫i)
P

j r
(1)

j r
(2)

j

. (32)

6

This is very similar to the scalar normalization from before, except that the
integrals over frequency from before are weighted by the weighting functions.

5 Some notation

In the code, we employ the notation

G↵� ⌘ 1

2
tr
�
R

1

Q

alt,↵
R

2

Q

alt,�
�

(33)

and

H↵� ⌘ 1

2
tr
�
R

1

Q

alt,↵
R

2

Q

tapered,�
�

(34)

where
Q

tapered,� ⌘ ei2⇡⌘↵(⌫i�⌫j)�(⌫i)�(⌫j) (35)

6 Accounting for a di↵erent number of delay

bins

Implementing the Fourier transforms as FFTs requires that the number of delay
bins N

dlys

is equal to N
freq

. We may want to use fewer delay bins, so that each
bin is thicker. In general, the quadratic estimator formalism allows arbitrary bin
sizes. These bins can even be non-uniform. However, it turns out that for our
single scalar normalization factor to work, the bins must be uniform in size.
(Which makes sense—intuitively, if we had one bin that was twice as wide as
all other bins, one would need to account for that in the normalization). When
using evenly spaced bins, we pick

⌘↵ ⌘ ↵

N
dlys

�⌫
. (36)

This has implications for computing the scalar normalization. Our previous
derivation used the fact that

X

�

ei2⇡⌘�(⌫j�⌫i) = N
freq

�ij , (37)

but this is not true in general any more (even if we replace N
freq

with N
dlys

).
To see this, let us explicitly evaluate the sum

Sij ⌘
X

�

ei2⇡⌘�(⌫j�⌫i) =

Ndlys�1X

�=0

ei2⇡�(i�j)/Ndlys , (38)

where in the last equality we explicitly put in our new ⌘ spacings. If i = j, then
one does get N

dlys

. However, this sum can also evaluate to non-zero values for
certain i 6= j combinations. Recall that i and j are indices for frequency, so

7

they go from 0 to N
freq

� 1. Since N
dlys

< N
freq

, it is possible for (i� j)/N
dlys

to be equal to an integer. If such a condition is fulfilled, one sees that the sum
will also evaluate to N

dlys

. If the condition is not fulfilled, we have a geometric
series that can be summed explicitly to give If i 6= j, the sum is a geometric
series that can be summed explicitly to give

Sij =
1� ei2⇡(i�j)

1� ei2⇡�(i�j)/Ndlys
= 0. (39)

This means that

Sij =

(
N

dlys

if (i� j)/N
dlys

is an integer

0 otherwise.
(40)

This is less convenient than what we had before, but that’s ok. Pushing forward,
we can compute one of the pieces that we need for the scalar normalization (see
Equation 20):

tr
�
Q

alt,↵
Q

alt,�
�
=

X

ij

ei2⇡⌘↵(⌫i�⌫j)Sij =
X

ij

ei2⇡↵(i�j)/NdlysSij . (41)

Notice that regardless of ↵, the complex exponential factor is equal to 1 when-
ever Sij = N

dlys

, and 0 whenever Sij = 0. This implies that tr
�
Q

alt,↵
Q

alt,�
�
is

independent of the value of ↵.
The other piece that we need is

P
� tr

�
Q

alt,↵
Q

�
�
. With very thick bins, it

is prudent to revisit one of the approximations that we made in forming Q

� . In
particular, we made the approximation that

Z

⌘↵

d⌘ei2⇡⌘(⌫i�⌫j) ⇡ �⌘ei2⇡⌘↵(⌫i�⌫j), (42)

which is appropriate when the bins are thin. To be more exact when the bins
are thick, one can just evaluate the integral explicitly to give

Z

⌘↵

d⌘ei2⇡⌘(⌫i�⌫j) = �⌘ei2⇡⌘↵(⌫i�⌫j)sinc [⇡�⌘(⌫i � ⌫j)] . (43)

Redoing our derivation for
P

� tr
�
Q

alt,↵
Q

�
�
with this expression gives

X

�

tr
�
Q

alt,↵
Q

�
�

=
X

ij

ei2⇡↵(i�j)/NdlysSij�⌘ sinc [⇡�⌘(⌫i � ⌫j)]

⇥
Z

d2✓A(✓, ⌫i)A(✓, ⌫j)
�(⌫i)

⌦p(⌫i)

�(⌫j)

⌦p(⌫j)
, (44)

which by the same logic as above, must be independent of ↵.
The fact that

P
� tr

�
Q

alt,↵
Q

�
�
and

P
� tr

�
Q

alt,↵
Q

alt,�
�
are independent of

↵ is crucial, because it implies that our normalizing constant

 ⌘
P

� tr
�
Q

alt,↵
Q

�
�

P
� tr (Q

alt,↵
Q

alt,�)
(45)

8

is also just a constant, independent of ↵. This was built into the infrastructure
of our code.

One handy feature of our new expressions is that even though is now
in general more complicated, if the primary beam is frequency-independent
over our band, our new normalization constant

new

can be related to our old
normalization constant

old

by some multiplicative factor that does not involve
the beam.

With a frequency-independent beam, the old normalization constant takes
the form

old

=
1

BN
freq

✓Z
d2✓

A(✓)2

⌦2

p

◆X

i

�2(⌫i), (46)

while the new normalization is of the form

new

=

✓Z
d2✓

A(✓)2

⌦2

p

◆ P
ij e

i2⇡↵(i�j)/NdlysSij�⌘ sinc [⇡�⌘(⌫i � ⌫j)] �(⌫i)�(⌫j)P
ij e

i2⇡↵(i�j)/NdlysSij
.

(47)
Using the fact that �⌘ is now 1/(N

dlys

�⌫) rather than 1/(N
freqs

�⌫), we have

new

old

=
N2

freq

N
dlys

P
ij e

i2⇡↵(i�j)/NdlysSij sinc [⇡�⌘(⌫i � ⌫j)] �(⌫i)�(⌫j)

[
P

i �
2(⌫i)]

⇣P
ij e

i2⇡↵(i�j)/NdlysSij

⌘ , (48)

so the primary beam cancels out in this adjustment factor.

7 Converting to cosmological coordinates

The power spectrum P defined in Equation (8) can be thought of as the power
spectrum in “telescope coordinates”, with units of mK2 SrMHz. Ultimately, we
are interested in a power spectrum P in cosmological coordinates, with units of
mK2 h�3 Mpc3. Such a power spectrum is defined by the relation

hT̆ (k?, kk)T̆
⇤(k0

?, k
0
k)i ⌘ (2⇡)3�D(k� k

0)P (k?, kk), (49)

where

T̆ (k?, kk) ⌘
Z

d3re�ik·rT (r) and T (r) =

Z
d3k

(2⇡)3
eik·rT̆ (k?, kk). (50)

To translate between P and P , two things need to be done:

1. The u and ⌘ dependencies need to be mapped to k? and kk respectively,
using the relations

k? =
2⇡u

Dc
⌘ 2⇡u

X
and kk =

2⇡⌫
21

H
0

E(z)

c(1 + z)2
⌘ ⌘ 2⇡⌘

Y
. (51)

9

2. The estimated P needs to be multiplied by X2Y , i.e.,

P (k?, kk) =
c(1 + z)2D2

c

⌫
21

H
0

E(z)
P (u, ⌘) = X2Y P (u, ⌘). (52)

Derivations of these results are provided in Appendix A of Liu et al., PRD 90,
023018 (2014), so we won’t repeat them here. Note that in principle, X2Y is
frequency-dependent. Liu et al., ApJ 833, 242 (2016) shows that this can be
dealt with by absorbing the X2Y term into the scalar correction factor from the
previous section and moving it inside the ⌫ integral.

10

	Conversion from Jy to mK
	Normalization conventions in the quadratic estimator
	Window functions
	What if there are weighting matrices?
	Some notation
	Accounting for a different number of delay bins
	Converting to cosmological coordinates

