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In order to assess the errors in redundant calibration, we need to know what we should expect when the errors are caused by pure noise.

The goal of redundant calibration is to take a set of observed visibilities  and find a set of gains  and unique-baseline visibilities  that minimizes

where  is the per-baseline noise variance. Since  is a random variable, we would like to know its mean (or equivalently the number of degrees of freedom
 that would give us a mean  of 1) and its probabily distribution.

A classic example
First, let's simulate a much simpler estimator. We know that the the estimates of the variance of  identically and guassian-distributed random numbers with
unit variance is -distributed (https://en.wikipedia.org/wiki/Chi-squared_distribution) with  degrees of freedom Let's look at .

In [1]: import numpy as np 
from scipy import stats 
from copy import deepcopy 
import matplotlib.pyplot as plt 
%matplotlib inline 
np.random.seed(21) 

In [2]: d = 3 
mean = 1 
data = mean + np.random.randn(d,10000000) 
variance_estimators = np.sum((data - mean)**2, axis=0)/d 
print 'Mean of Variance Estimators:', np.mean(variance_estimators) 
 
x = np.linspace(0,5,100) 
plt.hist(np.sum((data - mean)**2, axis=0)/d, x, density=True, alpha=.5) 
plt.plot(x, stats.chi2.pdf(x*d, d)*d, label="$\chi^2$ with k = {}".format(d)) 
plt.title('Distribution of Variance Estimates from {} Numbers\nwith Variance 1 and Known Mean'.format(d)) 
plt.xlabel('Variance Estimator'); plt.ylabel('Probability Density') 
plt.legend() 
plt.show() 

However, if we don't already know the mean and have to fit for it simultaneously, the unbiased estimator of the variance
(https://en.wikipedia.org/wiki/Variance#Sample_variance) is a random variable that also follows a  distribution but with one fewer degree of freedom.
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Mean of Variance Estimators: 0.9999686634312153 

https://en.wikipedia.org/wiki/Chi-squared_distribution
https://en.wikipedia.org/wiki/Variance#Sample_variance


In [3]: d = 3 
mean = 1 
data = mean + np.random.randn(d,10000000) 
variance_estimators = np.sum((data - np.mean(data, axis=0))**2, axis=0)/(d-1.) 
print 'Mean of Variance Estimators:', np.mean(variance_estimators) 
 
x = np.linspace(0,5,100) 
plt.hist(variance_estimators, x, density=True, alpha=.5) 
for k in [d-1, d]: 
    plt.plot(x, stats.chi2.pdf(x*k, k)*k, label="$\chi^2$ with k = {}".format(k)) 
plt.title('Distribution of Variance Estimates from {} Numbers\nwith Variance 1 and an Unknown Mean'.format
(d)) 
plt.xlabel('Variance Estimator'); plt.ylabel('Probability Density') 
plt.legend() 
plt.show() 

A more complex example
Now let's consider a complex random variable with unit variance (split evenly between the real and imaginary parts, which are uncorrelated) in the case where
we need to simultaneously estimate the mean.

In [4]: d = 3 
data = 1.0/2**.5 * np.random.randn(d,10000000) + 1.0j/2**.5 * np.random.randn(d,10000000) 
variance_estimators = np.sum(np.abs(data - np.mean(data, axis=0))**2, axis=0)/(d-1.) 
print 'Mean of Variance Estimators:', np.mean(variance_estimators) 
 
x = np.linspace(0,5,100) 
plt.hist(variance_estimators, x, density=True, alpha=.5) 
for k in [d-1, d, 2*d - 2, 2*d - 1]: 
    plt.plot(x, stats.chi2.pdf(x*k, k)*k, label="$\chi^2$ with k = {}".format(k)) 
plt.xlabel('Variance Estimator'); plt.ylabel('Probability Density') 
plt.legend() 
plt.show() 

While the naive extension of the variance estimator in the above case produces an unbiased estimate, the variance of that estimator has been doubled when
we go from real to complex variables (consistent with this reference) (http://www.dsp-book.narod.ru/DSPMW/60.PDF). It is still -distributed, but the 
parameter that describes the distribution is now 4 rather than 2.

Put another way, while we still need to subtract a degree of freedom to account for simultaneously solving for the mean when normalizing the
variance estimator , we need to double that number  to describe the resulting  distribution.
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Mean of Variance Estimators: 0.9996494038014742 
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Generalizing to redundant-baseline calibration
So, how does this generalize to  for redundant calibration? Let's take a simple example where the number of degrees of freedom is small in order to
make any differences are readily apparent.

In [5]: from hera_sim.antpos import hex_array 
from hera_cal.datacontainer import DataContainer 
from hera_cal import redcal 

In [6]: # Set up array 
antpos = hex_array(2, split_core=False, outriggers=0) 
plt.scatter(np.array(antpos.values())[:,0], np.array(antpos.values())[:,1], s=100) 
plt.gca().set_aspect('equal') 
plt.title('Simulated Array Layout') 
plt.xlabel('Position (m)'); plt.ylabel('Position (m)') 
plt.show() 

In [7]: # Get redundancies and set up array 
reds = redcal.get_reds(antpos) 
freqs = np.linspace(100e6, 200e6, 1024, endpoint=False) 
times = np.linspace(0, 600./60/60/24, 600, endpoint=False) 
df = np.median(np.diff(freqs)) 
dt = np.median(np.diff(times)) * 3600. * 24 

In [8]: # Simulate redundant data with noise 
noise_var = .01 
g, tv, d = redcal.sim_red_data(reds, shape=(len(times),len(freqs))) 
n = DataContainer({bl: np.sqrt(noise_var/2) * (np.random.randn(*vis.shape) + 1j * np.random.randn(*vis.sha
pe)) for bl, vis in d.items()}) 
noisy_data = n + d 

In [9]: # Set up autocorrelations so that the predicted noise variance is the actual simulated noise variance  
for antnum in antpos.keys(): 
    noisy_data[(antnum, antnum, 'xx')] = np.sqrt(noise_var * dt * df) 
noisy_data.freqs = deepcopy(freqs) 
noisy_data.times_by_bl = {bl[0:2]: deepcopy(times) for bl in noisy_data.keys()} 

In [10]: # Perform redundant calibration 
cal = redcal.redundantly_calibrate(noisy_data, reds) 

Now the expected number of degrees of freedom, following Zheng et al. (2014) (https://arxiv.org/pdf/1405.5527.pdf), is the number of observations minus the
number of gains and the number of unique visibilities. In our case, that would be . That's how our equation for  is normalized
in hera_cal.redcal (https://github.com/HERA-Team/hera_cal/blob/f96c89bdb0fa08d16c31f10a3624dbce09943b04/hera_cal/redcal.py#L950) as of the
writing of this memo (though expect it to change shortly) (https://github.com/HERA-Team/hera_cal/blob/master/hera_cal/redcal.py). However we see right
away that there's a problem.

In [11]: print 'Mean ChiSq per "degree of freedom":', np.mean(cal['chisq']['Jxx']) 
zheng_dof = len(d) - len(tv)- len(g) 
print 'Mean ChiSq:', np.mean(cal['chisq']['Jxx']) * zheng_dof 

This suggests that the  is actually 7, not 5. What accounts for the extra two degrees of freedom? Well, the number of parameters constrained by
redundant calibration is not simply the number of gains plus the number of visibilities. It's actually fewer, because redundant calibration has 4 degeneracies
(three phase and one amplitude) (https://arxiv.org/abs/1712.07212). Since we're considering complex numbers, this is equivalent to two extra  in the
denominator.

Now, what about the distribution of ?
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Mean ChiSq per "degree of freedom": 1.3969062584875176 
Mean ChiSq: 6.9845312924375875 
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In [12]: correct_dof = zheng_dof + 2 
 
x = np.linspace(0,5,500) 
chisq_corrected = cal['chisq']['Jxx'] * zheng_dof / correct_dof 
plt.hist(chisq_corrected.flatten(), x, density=True, alpha=.5) 
for k in [zheng_dof, correct_dof, zheng_dof*2, correct_dof*2]: 
    plt.plot(x, stats.chi2.pdf(x*k, k)*k, label="$\chi^2$ with k = {}".format(k)) 
plt.legend() 
plt.xlabel('Estimated $\chi^2$/DoF'); plt.ylabel('Probability Density') 
plt.show() 

So, as we saw from the case of the distribution of complex variance estimates, the distribution of  is a  function with .

Summary
We can summarize our findings as follows.

The probability distribution for a given  as a function of frequency and time and defined as

has a mean 1 when . Furthermore, that  follows an analytic  distribution with .

This differs from the formula presented in Equation 7 of Zheng et al. (2014) (https://arxiv.org/pdf/1405.5527.pdf), which would lead to very slight
overestimates of /DoF in that paper. It is difficult to check Figure 11 to see if the "perfect calibration" curve is broader than it should have been
because  was off by roughly a factor of 2. That part of the figure is now dubious.
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