
Omnical Convergence

August 22, 2018

1 Testing Convergence and χ2 in Redundant Calibration

by Aaron Parsons and Josh Dillon
Redundant calibration boils down to solving a system of equations of the form:

Vij = gig∗j yb (1)

where Vij is a measured visibility, gi, gj are antenna gains (’∗’ denotes complex conjugation),
and yb is a “model visibility" shared by all visibilities that are instantaneously redundant.

In order to solve this system of equations in practice, we iteratively linearize them, solve the
linearized form, and then re-linearize around the improved solution. Approaches to linearization
discussed in Liu et al. (2010) include using the logarithm (we call the solver based on this method
logcal) and first-order Taylor expansion, e.g.:

Vij − gig∗j yb = (∆gi)g∗j yb + (∆g∗j)giyb + (∆yb)gig∗j (2)

Once the system of equations has been linearized, in can generically be written as

Ax + n = y, (3)

which has the generic solution

x̂ = (A†N−1A)−1A†N−1y, (4)

where N = nn† is the noise covariance matrix. The explicit construction and inversion of the
matrix A†N−1A is computationally expensive, but can be worthwhile if the result can be used
repeatedly. This is the case for logcal, which can use the same matrix inversion to solve measure-
ments made at different times and frequencies. This makes it a relatively fast way to optimize a
system of equations. However, logcal suffers from the deficiency that noise is not Gaussian under
application of the logarithm, and so the results of logcal are biased.

Since Taylor expansion generates coefficients in A that are generally unique to each instance of
a system of equations (A is different across times and frequency), solution by matrix inversion is
typically very expensive. The LinProductSolver method implements this approach. It has attractive
properties regarding convergence and lack of bias, but is too computationally expensive to be used
in any but the most restricted cases.

1

1.1 How the Omnical Algorithm Works

The omnical algorithm is a specialization of a linear solver for redundancy-based calibration (see,
e.g., Liu et al. 2010) that avoids explicitly constructing and inverting the A†N−1A matrix for
computational efficiency. It was devised for the work presented in Zheng et al. (2014).

The omnical algorithm iteratively updates the estimate of the solution (the g’s and y’s) based
on the current estimated values. Namely, the updated value for gi is constructed as

g′i = gi

∑j wij
Vij

gi g∗j yb

∑j wij
, (5)

for chosen weights wij assigned to each measured visibility. Similarly,

y′b = yb

∑ij wij
Vij

gi g∗j yb

∑j wij
. (6)

In practice, these iterations are dampened to prevent oscillation or divergence which can result
from over-pursuing a solution. Typically, each iteration is constructed as a weighted average of
the current solution and estimated next step using a weighting factor ε with values in the range
0.1--0.5:

gi,next = (1− ε)gi + εg′i (7)
yb,next = (1− ε)yb + εy′b (8)

(9)

The reason this expression works can be seen by assuming Vij = gi,trueg∗j,trueyb,true + nij. For
simplicity, let’s assume wij = 1, although this is just for illustrative purposes. In this case, the
equation above becomes:

g′i =
gi

N ∑
j

gi,truegj,trueyb,true + nij

gig∗j yb
(10)

=
1
N

gi,true ∑
j

gj,trueyb,true + nij

g∗j yb
(11)

≈ gi,true

(
1 +

1
N ∑

j

nij

g∗j yb

)
, (12)

where N is the number of equations involving i, and the final step approximates that
gj,true/gj ≈ 1 and yb,true/yb ≈ 1. This algorithm extrapolates to gj (just conjugate Vij to put gj
out front) and yb in the same manner.

In choosing a weight for each Vij, an optimal choice for maximum sensitivity would be to
assign wij ∝ SNR2, or

wij =
|gi,trueg∗j,trueyb,true|2

〈|nij|2〉
. (13)

2

However, we do not know the true solutions yet. Our best option is to use our current estimate
of the solution to choose the weighting, and then update the weights as we improve our estimate
of the solution.

The implementation of omnical that currently exists in hera_cal.redcal makes the approximation
that

wij ≈ |gig∗j yb|2wij,user, (14)

where gi, gj, and yb are the current best estimates for the true parameter values, and wij,user
is a user-supplied weighting for each measurement that ideally should be proportional to |nij|−2.
These weights are used to update estimates of gi, gj, and yb for a series of minor-cycle iterations,
and then the weights themselves are updated in a major-cycle iteration that is more computation-
ally expensive.

2 Application of Redundant Calibration Solvers

In [1]: %matplotlib inline
from __future__ import print_function
import hera_cal.redcal as om
import hera_cal.omni
import omnical.calib
import numpy as np
import time
import uvtools
import pylab as plt
from scipy.stats import kde, chi2

In [2]: def build_linear_array(nants, sep=14.7):
antpos = {i: np.array([sep * i, 0, 0]) for i in range(nants)}
return antpos

def build_hex_array(hexNum, sep=14.7):
antpos, i = {}, 0
for row in range(hexNum - 1, -(hexNum), -1):

for col in range(2 * hexNum - abs(row) - 1):
xPos = ((-(2 * hexNum - abs(row)) + 2) / 2.0 + col) * sep
yPos = row * sep * 3**.5 / 2
antpos[i] = np.array([xPos, yPos, 0])
i += 1

return antpos

In [17]: np.random.seed(0)
SHAPE = (60,1024)
NANTS = 18
NOISE = 1e-3

antpos = build_linear_array(NANTS)
reds = om.get_reds(antpos, pols=['xx'], pol_mode='1pol')

3

info = om.RedundantCalibrator(reds)

gains, true_vis, d = om.sim_red_data(reds, shape=SHAPE, gain_scatter=.01)
d = {key: value.astype(np.complex64) for key,value in d.items()}
d_nos = {key: value + NOISE * om.noise(value.shape) for key,value in d.items()}
d_nos = {key: value.astype(np.complex64) for key,value in d_nos.items()}
w = dict([(k, np.float32(1.)) for k in d.keys()])
sol0 = dict([(k, np.ones_like(v)) for k, v in gains.items()])
sol0.update(info.compute_ubls(d, sol0))
sol0 = {k:v.astype(np.complex64) for k,v in sol0.items()}

In [4]: def gen_chisq(data, sol, noise):
d_mdl = {}
for bls in reds:

if len(bls) <= 1: continue
ubl = sol[bls[0]]
for bl in bls:

d_mdl[(bl[0],bl[1],'xx')] = \
sol[(bl[0],'x')] * sol[(bl[1],'x')].conj() * ubl

res = [data[k] - v for k,v in d_mdl.items()]
chisq = np.sum(np.abs(res)**2 / noise**2, axis=0) / (len(res) - len(sol))
return chisq

In [55]: def plot_gain_residuals(sol, true_gains, lim, nbins=20):
sol_degen = info.remove_degen(antpos, sol, degen_sol=true_gains)
keys = [k for k in sol.keys() if len(k) == 2]
for k in keys:

res = sol_degen[k] - true_gains[k]
res = res.flatten()
res = res[np.where(np.isfinite(res))]

ax = plt.subplot(121)
plt.grid()
_ = plt.plot(res.real, res.imag, '.', alpha=.2)
res = np.array([res.real, res.imag])
x,y = res
k = kde.gaussian_kde(res)
xi, yi = np.mgrid[x.min():x.max():nbins*1j, y.min():y.max():nbins*1j]
zi = k(np.vstack([xi.flatten(), yi.flatten()]))
plt.xlabel('Δg, real')
plt.ylabel('Δg, imag')
plt.xlim(-lim,lim); plt.ylim(-lim,lim)
ax.grid(b=True, which='major', color='k', linestyle='-')

ax2 = plt.subplot(122, sharey=ax)
plt.grid()
_ = plt.contour(xi, yi, zi.reshape(xi.shape), alpha=.5)
plt.xlabel('Δg, real')

4

plt.xlim(-lim,lim)
plt.setp(ax2.get_yticklabels(), visible=False)
ax2.grid(b=True, which='major', color='k', linestyle='-')

2.1 LOGCAL

In [18]: # LOGCAL
t0 = time.time()
sol_logcal = info.logcal(d, wgts=w)
print('LOGCAL: %4.1f s' % (time.time() - t0),

sol_logcal.values()[0].dtype)
t0 = time.time()
sol_nos_logcal = info.logcal(d_nos, wgts=w)
print('LOGCAL: %4.1f s' % (time.time() - t0),

sol_nos_logcal.values()[0].dtype)

LOGCAL: 2.0 s complex64
LOGCAL: 1.9 s complex64

In [56]: plt.figure(figsize=(8,4))
plot_gain_residuals(sol_nos_logcal, gains, 0.02)

This figure, which will be reproduced for each solver implementation below, illustrates the
distribution of residual errors in the complex plane for estimated parameter values over 61,440
repeated solutions of the same system of equations with independent noise draws. Color in the
left panel indicates antenna index. The right panel shows density contours for each antenna’s gain
parameters, with color indicating higher value contours.

By eye, logcal’s output appears roughly unbiased (centered around 0), but has a non-Gaussian
distribution.

5

2.2 OMNICAL (linsolve based)

In [22]: # OMNICAL
t0 = time.time()
meta_omnical, sol_omnical = info.omnical(d, sol0,

gain=.5, maxiter=500, check_after=30, check_every=6)
print('OMNICAL: %4.1f s' % (time.time() - t0),

sol_omnical.values()[0].dtype)
t0 = time.time()
meta_nos_omnical, sol_nos_omnical = info.omnical(d_nos, sol0,

gain=.5, maxiter=500, check_after=30, check_every=6)
print('OMNICAL: %4.1f s' % (time.time() - t0),

sol_nos_omnical.values()[0].dtype)

OMNICAL: 17.4 s complex64
OMNICAL: 11.2 s complex64

In [57]: plt.figure()
plot_gain_residuals(sol_nos_omnical, gains, 0.001)

The figure for linsolve-based omnical shows a tighter and more Gaussian distribution of resid-
uals relative to logcal above. The contours in the right panel overlap for all antennas and are
centered at zero, indicating a roughly unbiased and consistent error distribution for all antennas.

6

2.3 LinProductSolver

LinProductSolver is the full matrix-inversion form of the Taylor-series linearization solver. It is quite
slow, so much so that to have this converge in a reasonable amount of time, I actually initialize it
with a much better guess than all other solvers. It is initialized with the converged solution from
logcal above.

In [13]: # LinProductSolver (only solving 1/60th of the equations)
XXX lincal doesn't converge for dtype complex64 because of np.linalg.lstsq shenanigans
#dtype, conv_crit, mode = np.complex64, 1e-7, 'pinv'
dtype, conv_crit, mode = np.complex128, 1e-10, 'lsqr'
t0 = time.time()
_d = {k:v[:1].astype(dtype) for k,v in d.items()}
_sol = {k:v[:1].astype(dtype) for k,v in sol_logcal.items()}
meta_linsolve, sol_linsolve = \

info.lincal(_d, _sol, maxiter=10, conv_crit=conv_crit, mode=mode)
print('LINPRODUCTSOLVER: %4.1f s' % (time.time() - t0),

sol_linsolve.values()[0].dtype)
t0 = time.time()
_d_nos = {k:v[:1].astype(dtype) for k,v in d_nos.items()}
_sol_nos = {k:v[:1].astype(dtype) for k,v in sol_nos_logcal.items()}
meta_nos_linsolve, sol_nos_linsolve = \

info.lincal(_d_nos, _sol_nos, maxiter=10, conv_crit=conv_crit, mode=mode)
print('LINPRODUCTSOLVER: %4.1f s' % (time.time() - t0),

sol_nos_linsolve.values()[0].dtype)

LINPRODUCTSOLVER: 3.9 s complex128
LINPRODUCTSOLVER: 7.7 s complex128

In [58]: plt.figure()
_gains = {k:v[:1] for k,v in gains.items()}
plot_gain_residuals(sol_nos_linsolve, _gains, .001)

7

The figure above for LinProductSolver’s full linsolve-based matrix inversion solution looks
nearly identical to the omnical version above.

2.4 OMNICAL (legacy)

The legacy implementation of omnical, written in C and wrapped into Python, has several known
shortcomings, including an apparent bias in the solutions discovered by Wenyang Li. Nonethe-
less, is has been our reference implementation up to this point, so it is included here both as a
performance benchmark and as a comparison for whether final solutions are biased.

In [61]: # OMNICAL legacy
hcreds = om.get_reds(antpos, pols=['xx'], pol_mode='1pol')
pols = ['x']
antpos_ideal = np.array(antpos.values())
xs, ys, zs = antpos_ideal.T
layout = np.arange(len(xs))
_antpos = -np.ones((NANTS * len(pols), 3))
for ant, x, y in zip(layout.flatten(), xs.flatten(), ys.flatten()):

for z, pol in enumerate(pols):
z = 2**z # exp ensures diff xpols aren't redundant w/ each other
i = hera_cal.omni.Antpol(ant, pol, NANTS)
_antpos[int(i), 0], _antpos[int(i), 1], _antpos[int(i), 2] = x, y, z

_reds = hera_cal.omni.compute_reds(NANTS, pols, _antpos[:NANTS], tol=.01)
_info = hera_cal.omni.RedundantInfo(NANTS)
_info.init_from_reds(_reds, antpos_ideal)
_d, _d_nos = {}, {}

8

for key in d.keys():
if not _d.has_key(key[:2]):

_d[key[:2]] = {}
_d_nos[key[:2]] = {}

_d[key[:2]][key[-1]] = d[key]
_d_nos[key[:2]][key[-1]] = d_nos[key]

t0 = time.time()
meta_legacy, g, v = omnical.calib.lincal(_d, _info, maxiter=150)
print('OMNICAL: %4.1f s' % (time.time() - t0),

g.values()[0].values()[0].dtype)

t0 = time.time()
meta_nos_legacy, g_nos, v_nos = omnical.calib.lincal(_d_nos, _info, maxiter=150)
print('OMNICAL: %4.1f s' % (time.time() - t0),

g_nos.values()[0].values()[0].dtype)

OMNICAL: 110.5 s complex64
OMNICAL: 44.7 s complex64

In [62]: def legacy2sol(g,v):
sol = {}
for i in g['x'].keys():

sol[(i,'x')] = g['x'][i]
for bls in _reds:

i,j = int(bls[0][0]), int(bls[0][1])
sol[(i,j,'xx')] = v['xx'][(i,j)]

return sol

sol_legacy = legacy2sol(g,v)
sol_nos_legacy = legacy2sol(g_nos,v_nos)

In [63]: plt.figure()
plot_gain_residuals(sol_nos_legacy, gains, 0.001)

9

The residuals plotted for the legacy implementation of omnical look roughly consistent with
LinProductSolver and the linsolve-based omnical version, but close examination of the right panel
shows that the individual solutions for each antenna are not individually centered at zero. This is
our first indication of a possible bias in the legacy implementation of omnical.

3 Comparing Results

3.1 Computing Time

Noiseless Noisy
logcal 1.9s 1.9s
omnical (linsolve) 17.6s 11.4s
omnical (legacy C) 108.1s 44.6s
LinProductSolver† ∼ 250s ∼ 601s

Running from the same starting point with identical data, we have the following results. We
include the run-time of LinProductSolver, but mark it with † to indicate that it was given a better
starting position than the other solvers and used double precision. The increase in run-time in the
noisy case for LinProductSolver is likely a result of the starting position being much worse from
logcal, rather than being a result of the solution algorithm performing worse.

Note that the linsolve-based implementation of omnical runs faster than the C implementation
because of slight algorithmic differences, including reuse of computed values between different
parameter estimators and the introduction of major/minor-cycle computing cycles which allows
the reuse of computed values between solver iterations.

Convergence is defined differently between the two omnical implementations. For the legacy
C version it was defined by the fractional change in the χ2 between iterations. For the linsolve

10

version, it is defined by the fractional change in the estimated parameter values between iterations.
In practice, it seems that the linsolve version more reliably converges within the maximum number
of iterations. Also, because of performance differences, the linsolve version can be allowed to run
for more iterations, which also tends to ensure better convergence.

3.2 Checking Convergence in χ2

For the systems of equations with noise, we can check the distribution of χ2 for the solved val-
ues. For this idealized calibration case, convergence should result in a χ2 distribution that closely
resembles the ideal analytic case.

In [22]: chisq_logcal = gen_chisq(d_nos, sol_nos_logcal, NOISE)
chisq_omnical = gen_chisq(d_nos, sol_nos_omnical, NOISE)
chisq_linsolve = gen_chisq(d_nos, sol_nos_linsolve, NOISE)
chisq_legacy = gen_chisq(d_nos, sol_nos_legacy, NOISE)

plt.figure()
for label in ['logcal','omnical','linsolve','legacy']:

chisq = eval('chisq_' + label)
hist,bins = np.histogram(chisq, bins=100, range=(0,5))
_ = plt.semilogy(0.5*(bins[1:] + bins[:-1]), hist, label=label)

sol = sol_omnical
df = 2*(len(d) - len(sol))
x = 0.5*(bins[1:]+bins[:-1])
plt.plot(x, 7e5*chi2.pdf(x*df, df), label=r'χ^2 PDF')
plt.grid()
plt.legend()
plt.ylim(1e0,3e4)
plt.xlim(.5,2.5)
_ = plt.xlabel('Chi-Square')
_ = plt.ylabel('Bin Count')

11

As we can see in the figure above, logcal deviates significantly from the ideal χ2 distribution.
This is expected. The other algorithms all achieve similar χ2 distributions. These distributions
closely resemble the ideal χ2 distribution, but have a slight excess of values at higher χ2.

3.3 Checking for Bias in Solutions

Even though an individual solution to a system of equations may be consistent with the true an-
swer to within the noise, there may be a low-level bias that becomes visible when we average
many repeated solutions together. Here we compute |〈gi − gi,true〉|, the magnitude of the aver-
aged residual deviation from the truth, and compare that to

√
〈|gi − gi,true|2〉/

√
N, where N is the

number of measurements averaged over. Ideally, the averaged residual deviation should integrate
down in accordance with Gaussian statistics, with the result that the two values should be compa-
rable. If the averaged residual deviation is in excess of the expected level of fluctuations predicted
by Gaussian statistics, that would be an indication of bias.

In [23]: plt.figure()
for i,label in enumerate(['logcal','omnical','linsolve','legacy']):

sol = eval('sol_nos_'+label)
sol_degen = info.remove_degen(antpos, sol, degen_sol=gains)
keys = [k for k in sol.keys() if len(k) == 2]
res = [sol_degen[k] - gains[k] for k in keys]
ants = [k[0] for k in keys]
avg = [np.abs(np.average(r)) for r in res]
err = [np.sqrt(np.average(np.abs(r)**2) / r.size) for r in res]
color = 'rgbk'[i]
_ = plt.semilogy(ants, avg, color+'.', label=label+' <$x-x_0$>')

12

_ = plt.semilogy(ants, err, color+'x', label=label+' σ')
plt.ylabel('Residual Deviation')
plt.xlabel('Antenna Index')
plt.legend()
plt.grid()

In the figure above, we see that the expected level for residuals obeying Gaussian statistics
(indicated by ’X’ for each antenna) are higher for the logcal case, but are consistent for all the re-
maining cases. This indicates the the logcal residuals are larger to begin with. The actual averaged
residuals (indicated by ’.’ for each antenna) are roughly consistent with the predicted noise level
for the logcal, linsolve=LinProductSolver, and omnical cases, but not for the legacy C implementation
of the omnical algorithm. Note that the omnical and linsolve residuals match nearly exactly.

This seems to reproduce Wenyang Li’s result that the legacy implementation of omnical is in-
deed biased in its final results, even though each solution is consistent with the truth to within the
noise.

3.4 Checking Noise-free Convergence

In [29]: for i,label in enumerate(['logcal','omnical','linsolve','legacy']):
sol = eval('sol_'+label)
sol_degen = info.remove_degen(antpos, sol, degen_sol=gains)
keys = [k for k in sol.keys() if len(k) == 2]
res = [sol_degen[k] - gains[k] for k in keys]
print(label,sol.values()[0].dtype, np.sqrt(np.average(np.abs(res)**2)))

13

logcal complex64 1.51592919317e-07
omnical complex64 1.87193822464e-07
linsolve complex128 8.19520014588e-09
legacy complex64 3.67838346406e-07

It seems that all the solvers can converge on the true solution in the noise-free case with better
than 4e-7 precision. The LinProductSolver based method does better, but remember that it was
given double precision data.

3.5 Checking Repeatability from Different Starting Points

Here we just check that the omnical solver we intend to use going forward can converge to the
same solution from different starting points.

In [27]: sols = {0:sol_nos_omnical}
for i in range(1,4):

Build an alternate starting point for solving
sol1 = {k:(v + NOISE * om.noise(v.shape)).astype(np.complex64)

for k,v in sol0.items()}
_, sols[i] = info.omnical(d_nos, sol1,

gain=.5, maxiter=500, check_after=30, check_every=6)

In [32]: plt.figure()
for i in range(4):

sol = sols[i]
if i == 0:

label1, label2 = '<$x-x_0$>', 'σ'
else:

label1, label2 = '', ''
sol_degen = info.remove_degen(antpos, sol, degen_sol=gains)
keys = [k for k in sol.keys() if len(k) == 2]
res = [sol_degen[k] - gains[k] for k in keys]
ants = [k[0] for k in keys]
avg = [np.abs(np.average(r)) for r in res]
err = [np.sqrt(np.average(np.abs(r)**2) / r.size) for r in res]
color = 'rgbk'[i]
_ = plt.semilogy(np.array(ants)+.1*i, avg, color+'.', label=label1)
_ = plt.semilogy(np.array(ants)+.1*i, err, color+'x', label=label2)

plt.ylabel('Residual Deviation')
plt.xlabel('Antenna Index')
plt.legend()
plt.grid()

14

So repeatability looks very good.

15

	Testing Convergence and 2 in Redundant Calibration
	How the Omnical Algorithm Works

	Application of Redundant Calibration Solvers
	LOGCAL
	OMNICAL (linsolve based)
	LinProductSolver
	OMNICAL (legacy)

	Comparing Results
	Computing Time
	Checking Convergence in 2
	Checking for Bias in Solutions
	Checking Noise-free Convergence
	Checking Repeatability from Different Starting Points

