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1 Introduction

In an interferometer, each visibility is measured as the product of the true visibility on the sky with the
complex gains of the two antennas involved. Namely,

V obs
ij (ν) = gi(ν)gj(ν)∗V true

ij (ν) + nij(ν), (1)

where V obs
ij is the observed visibility, gi is the gain of antenna i, nij is the noise on the measured visibility, and

V true
ij is the true visibility of interest. The process of calibrating a radio interferometer requires thorough

knowledge of the antenna gains so that the true visibility can be inferred. In 21 cm cosmology, precise
determination of these gains is essential to the isolation of 21 cm signal from smooth but 104−5 times brighter
astrophysical foregrounds. HERA is designed to be calibrated using redundant-baseline calibration (Dillon
and Parsons, 2016), a technique that leverages multiple simultaneous measurements of the same V true

ij by
different pairs of antennas with the same physical separation. This allows solutions for both the gains and
true visibilities simultaneously as a large over-determined system of equations (Liu et al., 2010). However,
this technique cannot quite solve for all the degrees of freedom in the problem; there are a handful of
unsolvable degeneracies per frequency that require reference to a sky-model or an externally-calibrated set
of visibilities to resolve (Dillon et al., 2018). This process of absolute calibration (abscal) combined with
redundant-calibration (redcal) from the backbone of calibration technique in HERA’s first two Internal Data
Releases (Dillon, 2019, 2018).

2 Temporal Structure of Calibration Solutions

We have known for some time that HERA’s calibration solutions exhibit temporal structure inconsistent with
thermal noise. While gain amplitudes and phases can certainly vary with time and environmental factors
(e.g. ambient temperature), we can rule out the explanation that most of this variation is intrinsic or “real”
by observing that the temporal structure in the gains repeats from day to day as a function of local sidereal
time (LST), as we show in Figure 1 using calibration results from IDR 2.2.

Since the local time at a fixed LST varies by more than a hour over the 18 days of IDR 2.2, the
effect must be attributable to variations in the sky as perceived by the instrument. If the instrument were
truly redundant and the differences between antennas explicable by a single complex gain, the brightness
of foregrounds and their distribution on the sky should not affect the calibration solution—explaining it
requires invoking instrumental nonidealities.

This observation raises two key questions:

1. Can we use existing techniques for smoothing calibration solutions to reduce the temporal structure
we see in the data, by filtering out timescales where we have no evidence for “real” temporal variation?
If so, what timescale is appropriate for that?
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Figure 1: Here we show calibration gain amplitudes as a function of LST for a single antenna and polarization
(in this case, Antenna 88x) and at a single frequency (∼125 MHz). Calibration is performed independently
on every day, frequency, and 10.7 s integration. Each of the 18 background lines in the graph represents a
day of gains from IDR 2.2 after redundant calibration, absolute calibration, and flagging. The magnitude
of the fluctuations—at the ∼20% level—is typical of antennas and frequencies. Some of that fluctuation is
expected from thermal noise, but the coherent fluctuations that repeat from day to day (especially around
4 hours) at the same LST indicates a systematic error. The foreground yellow line is an average calibration
solution over all after removing two particularly flagged days (JD 2458104, 2458105, 2458109) and all times
when the sun was above the horizon. This average can be used to estimate how much of the of the temporal
variation is due to systematics—especially non-redundancy.

2. Can we explain the observed temporal structure in calibration solutions using a realistic sky model
and plausible levels of non-redundancy?

In Section 3 we address the former question; in Section 4 we address the latter.

3 Estimating the Intrinsic Timescale of Calibration Variation

To understand how much of the temporal structure in our calibration solutions appears to be intrinsic or
“real” and how much is attributable to effects that repeat night to night, we first want to calculate an
average calibration solution over nights as a function of LST. For each day, we shift our calibration solutions
to nearest grid points in LST and then average, taking into account different RFI flags on different days.
JD 2458104, 2458105 and 2458109 were removed since they are substantially flagged. Likewise, times when
the sun was above the horizon were also removed. The resultant average is shown in yellow in Figure 1.

In order to statistically assess the temporal structure of the calibration solutions by examining their
temporal power spectra, we need to address the gaps in our data created by RFI flags. This is especially
true of the night-by-night data, though we also see some flagged LSTs in our averaged data. We performed
a low-pass filter on 60 s timescales to interpolate over RFI gaps using an iterative CLEAN algorithm. The
result of this filter is demonstrated in Figure 2.

With the RFI gaps filled, we now calculate temporal power spectra of the gains. Our power spectra are
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Figure 2: In order to eliminate the discontinuities in calibration solutions, we performed a low-pass Fourier
filter, keeping temporal structure on timescales longer than 60 s. This allows us to then calculate temporal
power spectra. Here we see the typical effect of the filter (red line) interpolating between the discontinuities
in the data (blue line) on a single antenna and frequency (88x, ν ∼ 125Hz) for 2 hours LST on a given night
(JD 2458098).

defined as

Pi(f) = |FFT (H(t)gi(t)) |2, (2)

where f is fringe-rate, the Fourier dual to time of observation and H(t) is a Hann window used to suppress
sidelobes. We investigate the temporal power spectra of both our gain solutions and our gain solutions
divided by the day-averaged solution (Figure 1), normalizing both to peak at 1 at f = 0 Hz. This assumes
that our gain solutions are separable as the product of a LST-dependent systematic and time-dependent
intrinsic fluctuations. In Figure 3 we show the power spectra produced by separating the gains in this way.
After dividing out our LST-mean calibration solution for every antenna from every day, we produce power
spectra for each day and antenna. These power spectra are then averaged incoherently to form our best
estimate of the intrinsic timescale of calibration fluctuations (the blue line in lower right panel). We also
show the temporal power spectra of uncorrected gains averaged in the same way, which closely matches the
average power spectra over all antennas of the LST-means for each antenna1.

The main takeaway from this analysis is that most, if not all, of the temporal structure on timescales
shorter than a few hours is attributable to the LST-locked gain variations that repeat from day to day. This
means that, when smoothing our calibration solutions, we can comfortably filter out short timescales from
our calibration solutions without losing real temporal structure. This analysis justifies the use of a 6-hour
filtering timescale in IDR 2.2.

1These deviate at high fringe rate because the latter involves a coherent average over days and an incoherent average over
antennas, rather than an incoherent average over both axes. As a result, this power spectrum hits a lower noise floor in the
lower right panel.
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Figure 3: Here we show temporal power spectra of our calibration solutions. Top left: the renormalized
power spectrum of a single antenna, 88x, on a single day, 2458098. Top right: Incoherently averaged power
spectra over antennas for a subset of the days, with each line representing a different day. Bottom left:
Incoherently averaged power spectra over days for a subset of the antennas, with each line representing a
different antenna. Bottom right: Here we average incoherently over days and antennas, both before (orange
line) and after (blue line) dividing out a per-antenna gain averaged over days (whose average power spectrum
is shown in green). Our estimate for the intrinsic temporal power spectrum of the gain solutions quickly hits
a noise floor and we see little evidence for real temporal structure on timescales shorter than ∼6 hours.

4 Reproducing Sky-Locked Temporal Structure in Gain Solutions
In Simulations with Non-Redundancy

We now turn to our second key question: what causes the observed LST-locked temporal structure in our
calibration solutions? Our main suspect is non-redundancy, especially antenna-to-antenna variation of the
primary beam. To see why, consider the Equation 1 for the observed visibility, but expanded to include the
integral over the sky and the beam:

V obs
ij (ν) = gi(ν)g∗j (ν)

∫
dΩ I(ŝ, ν)Bij(ŝ, ν) exp

[
−2πi

ν

c
(~bij · ŝ)

]
. (3)

Here I is the sky brightness, Bij =
√
BiBj , the product of the voltage beams of antennas i and j, and ~bij

is the baseline vector connecting them. To simulate a visibility, we approximate the sky as a set of discrete
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sources,

I(ŝ, ν) ≈
∑
n

In(ν)δ(ŝ− ŝn), (4)

yielding a sum over point sources at positions ŝn with spectra In(ν):

Vij(~bij , ν) ≈ gi(ν)g∗j (ν)
∑
n

In(ν)Bij(ŝn, ν) exp [−2πi
ν

c
(~bij · ŝn)]. (5)

Now consider the case where a single point source with flux I0 dominates the observed sky. The observed
visibility would be simply would simply be

Vij(~bij , ν) ≈
[
gi(ν)

√
Bi(ŝ0, ν)

] [
g∗j (ν)

√
Bj(ŝ0, ν)

]
I0(ν) exp [−2πi

ν

c
(~bij · ŝ0)]. (6)

Here we have rearranged the terms to suggestively highlight the confusion that arises when beams vary from
antenna to antenna. Namely, if we assume that all antennas have the same beam—an assumption key to
redundant calibration and generally difficult to relax even in sky-based calibration—then we will misinterpret
variations in the primary beam in a particular direction as a bright source moves overhead as variations in
gain. This is consistent with our observation that the most dramatic temporal gain variations occur when
Fornax A (RA= 3h22m) is in the main lobe of the primary beam or a close sidelobe. Of course, the effect
can still occur with multiple bright sources, but it is harder to understand analytically.

To test this qualitative picture of temporal structure, we simulate a sky at 125 MHz over the same range
of LSTs. We use the Global Sky Model (De Oliveira-Costa et al., 2008) with HEALPix NSIDE = 128 along
with 1000 of the brightest sources closest to HERA’s zenith from the GLEAM catalog (Hurley-Walker et al.,
2017). We also add the brightest known radio sources listed in Table 2 of Hurley-Walker et al. (2017). While
it does not appear in that paper, we also include Fornax A modeled as a single point source with 750 Jy at
150 MHz with spectra index α = −.81 (McKinley et al., 2014).

Our noise-free simulated visibilities include all baselines in IDR 2.2. Following Orosz et al. (2019), we
simulate non-redundancy by modeling each antenna with a perturbed position and with an Airy beam
parametrized as

Bi(~r, ν) =

2J1

(
k
√
a2x(x− xpc)2 + a2y(y − ypc)2

)
k
√
a2x(x− xpc)2 + a2y(y − ypc)2

2

, (7)

where J1 is a Bessel Function of the first kind, k is the wave number given by, k = 2πν/c, and xpc and ypc
are the coordinates of the pointing center and ax and ay parameterize the shape of the beam. xpc and ypc
both have mean 0 (i.e. pointing center at zenith) and ax and ay both have a mean of 6 m. However, each
antenna has errors in these parameters, as well as their positions on the ground, drawn from a Gaussian
distribution with standard deviations in Table 1.

Position Error: σpos [m] Beam Size Error: σa[m] Beam Pointing Error σpc [unitless]
0.03 0.0909 0.005135

Table 1: Antenna position, beam size, and beam pointing error levels. The latter two correspond to a .15◦

standard deviation the FWHM and a .28◦ standard deviation in the pointing. See Orosz et al. (2019) for
more details.

Our simulation is generated with perfect calibration, but performing redundant-baseline calibration on a
non-redundant array introduces temporal structure into the gain solutions. We then compute the temporal
power spectrum of the gain solutions for each antenna in the simulation and average them together incoher-
ently. The result, shown in Figure 4, reproduces the observed temporal power spectra extremely well at all
timescales up to the point where the simulation dips below the noise floor in the data.

We can conclude that the observed LST-locked temporal structure in our gain solutions is largely, if not
entirely, attributable to non-redundancy in the array and can therefore be mitigated. This mitigation can be
done by making the array more redundant or finding ways to weight the visibilities in redundant calibration
to down weight sidelobes where the most antenna-to-antenna variation is likely to occur.
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Figure 4: Here we compare the simulated power spectrum of the calibration gains with the actual power
spectrum from IDR 2.2, using both instrumental polarizations (the orange line is the same as the one in the
bottom right panel of Figure 3). The simulation faithfully reproduces the temporal statistics of the effect
we saw using HERA data at basically all timescales until the data hit a noise floor in the data at a relative
power level of ∼ 5 × 10−6, lending credence to the hypothesis that the temporal structure we see is due to
non-redundancy.)
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