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1 Introduction

This memo is intended as a supplement to Byrne et al. 2019 (in review), available at
https://arxiv.org/abs/1811.01378. The work presented in this memo follows the
conventions developed in that paper.

2 Absolute Calibration from Sky-Based Calibration

One method of absolute calibration uses sky-based calibration solutions. Full sky-based
calibration is implemented by varying gsky

i to minimize

χ2
sky(f) =

∑
jk

|vjk(f)− gsky
j (f)gsky∗

k (f)mjk(f)|2

σ2
jk(f)

. (1)

The absolute calibration parameters A, ∆x, and ∆y are then fit from the maximum-
likelihood sky-based gains ĝi

sky:

Â(f) =
1

N

N∑
j=0

|ĝjsky(f)| (2)

and ∆, ∆x, and ∆y are varied to minimize

χ2
φ(f) =

N∑
j=0

(
Arg[ĝj

sky(f)]−∆(f)−∆x(f)xj −∆y(f)yj

)2
. (3)

Here (xj , yj) is the position of antenna j.

3 Optimal Absolute Calibration

An optimal absolute calibration method bypasses sky-based calibration to calculate the
absolute calibration parameters directly from the χ-squared. Here the χ-squared is

χ2 =
∑
α

∑
{k,m}α

1

σ2
km

∣∣∣vkm −A2e−i(∆xxα+∆yyα)ĥkĥ∗mmα

∣∣∣2 (4)

where α denotes a redundant baseline set and {k,m}α are the antenna pairs that con-
tribute to that set. At this point we assume relative calibration has already been per-

1



formed, and {ĥk} are the maximum-likelihood relative calibration gains. We also assume
that the overall phase ∆ has been set, e.g. from a reference antenna.

We solve for each of the absolute calibration parameters by analytically minimiz-
ing the χ-squared. Taking the derivative with respect to A gives:

∂χ2

∂A
=
∑
α

∑
{k,m}α

1

σ2
km

(
∂

∂A
[Re(vkm)−A2 Re(e−i(∆xxα+∆yyα)ĥkĥ∗mmα)]2

+
∂

∂A
[Im(vkm)−A2 Im(e−i(∆xxα+∆yyα)ĥkĥ∗mmα)]2

)
=
∑
α

∑
{k,m}α

−4

σ2
km

A
[
−A2e−i(∆xxα+∆yyα)ĥkĥ∗mmα

+ Re(vkm) Re(e−i(∆xxα+∆yyα)ĥkĥ∗mmα)

+ Im(vkm) Im(e−i(∆xxα+∆yyα)ĥkĥ∗mmα)
]

=
∑
α

∑
{k,m}α

−4

σ2
km

A
[
−A2e−i(∆xxα+∆yyα)ĥkĥ∗mmα

+ Re(v∗kme
−i(∆xxα+∆yyα)ĥkĥ∗mmα)

]
.

(5)

Now setting ∂X2

∂A = 0 gives

A2 =

∑
α

∑
{k,m}α

1
σ2
km

Re(v∗kme
−i(∆xxα+∆yyα)ĥkĥ∗mmα)∑

α

∑
{k,m}α

1
σ2
km
e−i(∆xxα+∆yyα)ĥkĥ∗mmα

. (6)

Taking the derivative of χ-squared with respect to ∆x gives

∂χ2

∂∆x
=
∑
α

∑
{k,m}α

−2

σ2
km

A2xα Im(v∗kme
−i(∆xxα+∆yyα)ĥkĥ∗mmα) (7)

and setting ∂X2

∂∆x
= 0 gives

∑
α

xα cos(∆xxα + ∆yyα)
∑
{k,m}α

1

σ2
km

Im(v∗kmĥkĥ
∗
mmα)

=
∑
α

xα sin(∆xxα + ∆yyα)
∑
{k,m}α

1

σ2
km

Re(v∗kmĥkĥ
∗
mmα).

(8)

We assume that ∆x and ∆y are small and exploit that assumption to Taylor expand
around ∆x = 0 and ∆y = 0:∑

α

∑
{k,m}α

1

σ2
km

xα Im(v∗kmĥkĥ
∗
mmα)

= ∆x

∑
α

∑
{k,m}α

1

σ2
km

x2
α Re(v∗kmĥkĥ

∗
mmα)

+ ∆y

∑
α

∑
{k,m}α

1

σ2
km

xαyα Re(v∗kmĥkĥ
∗
mmα).

(9)
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Likewise, taking the derivative of χ-squared with respect to ∆y gives

∂χ2

∂∆y
=
∑
α

∑
{k,m}α

−2

σ2
km

A2yα Im(v∗kme
−i(∆xxα+∆yyα)ĥkĥ∗mmα) (10)

and setting ∂χ2

∂∆y
= 0 gives

∑
α

yα cos(∆xxα + ∆yyα)
∑
{k,m}α

1

σ2
km

Im(v∗kmĥkĥ
∗
mmα)

=
∑
α

yα sin(∆xxα + ∆yyα)
∑
{k,m}α

1

σ2
km

Re(v∗kmĥkĥ
∗
mmα).

(11)

Once again Taylor expanding around ∆x = 0 and ∆y = 0 gives∑
α

∑
{k,m}α

1

σ2
km

yα Im(v∗kmĥkĥ
∗
mmα)

= ∆x

∑
α

∑
{k,m}α

1

σ2
km

xαyα Re(v∗kmĥkĥ
∗
mmα)

+ ∆y

∑
α

∑
{k,m}α

1

σ2
km

y2
α Re(v∗kmĥkĥ

∗
mmα).

(12)

Solving Equations 9 and 12 together gives the maximum-likelihood phase gradient
parameters ∆̂x(f) and ∆̂y(f). Plugging those values into Equation 6 then gives the
maximum-likelihood amplitude parameters Â(f).

4 Comparing Absolute Calibration Methods

The two absolute calibration methods described here are not mathematically equiva-
lent, but simulations indicate that they are effectively equivalent. To show this, we
simulate a hexagonal array of 331 antennas (see Byrne et al. 2019, preprint available at
https://arxiv.org/abs/1811.01378). We use the FHD analysis pipeline to simulate
data visibilities from 51,821 sources from the GLEAM EoR-0 field and simulate model
visibilities from the 4,000 brightest of those sources in apparent brightness. We then
perform absolute calibration using both methods described in this memo. As the true
gains in this simulation are 1, we represent perfect redundancy by letting ĥi = 1 for all
antennas i.

Figure 1 plots the parameter Â(f). The solid blue line was calculated from sky-
based calibration solutions, and the dashed blue line was calculated using the optimal
absolute calibration method.

Likewise, Figures 2 and 3 plot the parameters ∆̂x and ∆̂y, respectively. Once
again, the solid blue lines indicate the parameters calculated from sky-based calibration
solutions and the dashed blue lines were calculated with the optimal absolute calibration
method.

These plots show that the two absolute calibration methods are effectively equiv-
alent, and that discrepancies between the two methods are at least two orders-of-
magnitude less than the errors in the absolute calibration parameters from sky model
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Figure 1
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Figure 2
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Figure 3
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incompleteness.
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