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In this memo, we focus on the optimal quadratic estimator, defined as:

P̂α =
∑
β

(F−1)αβ(q̂β − b̂β) (1)

where F is the Fisher matrix (which determines errors on the power spectrum estimate)

Fαβ ≡ 1

2
tr
(
C−1QαC−1Qβ

)
, (2)

q̂ is the un-normalized power spectrum estimate

q̂α =
1

2
x†C−1QαC−1x, (3)

and b̂ is the additive bias

b̂α =
1

2
tr
(
UC−1QαC−1

)
. (4)

We will mathematically illustrate its role in estimating the power spectrum of EoR.

While there exists detailed literature about quadratic estimators in general (e.g., Liu &

Tegmark 2011; Trott et al. 2012; Liu et al. 2014; Dillon et al. 2014), here we focus on two

simple cases in order to outline one situation where the estimator successfully suppresses

contamination and one where it does not. By describing these two cases, we hope to clarify

and motivate the desire to use OQE while also understanding its limitations.

We specifically choose toy models where the data covariance is diagonal, as indeed we

expect the EoR signal to be. We assume we have N data points ∆i which are the sum of a

desired signal σi and an undesired contaminant υi

∆i = σi + υi (5)

with

〈σi〉 = 0; 〈σ2
i 〉 = s; and 〈σσT 〉 = sIN×N ≡ S, (6)

where we wish to estimate s. The contaminant in this first case has a similar structure (as

the EoR) for its covariance, and is assumed uncorrelated with the signal

〈υi〉 = 0; 〈υ2i 〉 = u; 〈υυT 〉 = uIN×N ≡ U; and 〈σiυj〉 = 0. (7)

With the covariance matrix given by C = S+U, the estimator for s using only the quadratic

part of Equation (1) is

ŝ =
∆T∆

N
(8)



– 2 –

and its expectation is

〈ŝ〉 = s+ u. (9)

Thus, when the covariance structure of the contaminant is identical to the signal (∂S
∂s

=
∂U
∂u

= ∂C
∂s

), the information available to the quadratic portion of the estimator to distinguish

between the two is degenerate, and knowledge only of C and ∂C
∂s

is inadequate. In order to

obtain an unbiased estimate of s, one must also use knowledge of U. Indeed, computing the

linear bias from Equation (4), one finds b = u.

Now consider a case, chosen to be very similar to the toy model in ??, in which the data

again have an additive contaminant, now given by

∆i = σi + υmi (10)

where the properties of σi are as before, but now υ is a random variable and mi is a fixed

function of i with

〈υ〉 = 0; 〈υ2〉 = u; 〈υυT 〉 = ummT ≡ U; mTm = 1; and 〈σiυ〉 = 0. (11)

Here m represents a mode which is correlated across many data points (i.e., we are assuming

U need not be diagonal), with amplitude given by υ. The normalization of m is a matter of

convention, and can be absorbed in the variance u; the choice above will be convenient for

understanding the limiting case u� s.

We can calculate the quadratic portion of the estimator explicitly by using the Sherman-

Morrison identity to invert the covariance matrix. Defining

ξ ≡ u/s

1 + u/s
, (12)

we have

C−1 =
1

s

(
I− ξmmT

)
(13)

and

ŝ =
∆T (I + (ξ2 − 2ξ)mmT )∆

N + ξ2 − 2ξ
(14)

with expectation

〈ŝ〉 = s+
1− 2ξ + ξ2

N +−2ξ + ξ2
u. (15)

It is worth observing immediately that there is no multiplicative bias on s, and that the

additive bias is strictly < u/N .

An instructive limit is u � s, ξ → 1, in which case the virtue of weighting by C−1

becomes clearer, as it becomes

C−1 =
1

s

(
I−mmT

)
(16)
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where I −mmT is the projection operator, projecting out m from any vector it acts on,

and further, the linear bias tends to 0 as ξ → 1 (i.e., the projection is “perfect” and not

“undone” by the Fisher matrix normalization).

This is the ideal case for the inverse covariance weighting performed in the PAPER

analysis, where removal of contamination with a known covariance can be suppressed by

a kind of projection of the offending modes. But even in this case, it is worth pointing

out that the estimator still has a linear bias for finite u. We have also assumed that the

contaminating mode m is known perfectly; the next appendix takes up the case where the

modes are estimated from the data.
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