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Abstract

This note defines some system characterization parameters in the context
of HERA observations. It mostly adheres to IEEE definitions. The defined
parameters are in bold and are: antenna normalized power pattern, di-
rective gain, gain pattern, gain, antenna efficiency, effective area, aperture
efficiency, beam solid angle, antenna temperature, receiver temperature,
system temperature, sensitivity and SEFD.

1 Antenna Properties

The Antenna Normalized Power Pattern, P (θ, φ), is described by the ratio of the power received from
a point source at infinity as a function of pointing direction to its maximum value. We define this maximum
pointing direction to occur at θ = φ = 0 and call it “boresight”. If we measure power in arbitrary units as a
function of pointing as W (θ, φ), then

P (θ, φ) =
W (θ, φ)

W (0, 0)
(1)

This is unitless and usually plotted in decibels as P [dB] = 10log10(P ).
The Directive Gain of an antenna, D(θ, φ), is another “pattern” but normalized to the power received

by a (theoretically impossible) isotropic antenna. It may be expressed as:

D(θ, φ) =
4πP (θ, φ)∫ ∫
P (θ, φ)dΩ

(2)

This is also dimensionless, but is also usually plotted as ”decibels relative to isotropic” D[dBi] = 10log10(D).
The Directivity of an antenna, D without the (θ, φ), is the directive gain value at its maximum value,

which we’ve defined as boresight: D = D(0, 0).

λν = c (3)
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The Gain Pattern of an antenna, G(θ, φ), is the directive gain reduced by any other losses not caught
in integrating the beam pattern. This comes from things like ohmic losses and leakage, which we lump into
an efficiency parameter we’ll denote ηR

G(θ, φ) = ηRD(θ, φ) (4)

Since the input reference point has been specified at the antenna terminals, things like mismatch are ignored
here. They are present in the real system and must be included in the full system analysis.

The Gain of an antenna, G without the (θ, φ), is the value of the gain pattern at boresight: G = ηRD.
Note that typically ηR ≈ 1, so that D and G are generally quite close to each other in value and we

often and confusingly use them interchangeably, but if you care about the details don’t forget about ηR (and
don’t forget whether you mean at boresight, or at some other angle).

The Antenna Efficiency, η, is the ratio of the Effective Area of an antenna, Ae, to the geometric
area of the antenna, Ag (this serves to circuitously define both η and Ae). So,

Ae = ηAg (5)

Note that we may define an Aperture Efficiency, ηA, as

ηA =
4λ2

πd2ΩA
(6)

where d is the diameter and ΩA is the Beam Solid Angle defined as

ΩA =

∫ ∫
P (θ, φ)dΩ (7)

Then we find that η = ηAηR.
Finally, we note that we can relate effective area to gain by

G = ηRD = ηRηA

(
πd

λ

)2

(8)

Note that this also means we could define the effective area as a function of pointing angle, however generally
we mean it to be at boresight. Also, a lot of “efficiencies” are absorbed in the terms above, which I’ve left
out of scope here.

2 Temperatures

This will present a very simple set of temperature definitions appropriate for HERA observations. For a
perfect and noiseless system, the power present at the antenna terminals from the sky for a pointing direction
(θ, φ) in bandwidth ∆ν is

W (θ, φ) =
1

2
Ae

∫ ∫
B(θ′, φ′)P (θ′ − θ, φ′ − φ)dΩ′∆ν (9)

where B(θ, φ) is the sky brightness. Comparing this to the power from just a resistor at temperature T
(w = kT∆ν) we can define an equivalent Antenna Temperature, TA as

TA =
Ae

2k

∫ ∫
B(θ′, φ′)P (θ′ − θ, φ′ − φ)dΩ′ (10)

Of course, we don’t have a perfect, noiseless receiver (still working on it), so that it also injects noise
into the system. We define that extra noise as the Receiver Temperature, TR. Note that even though



it is injected throughout the receiver, we pretend it is all injected at the antenna terminals as well (we call
that the “input-referred noise temperature”). If we make sure to do that, the total power available at the
antenna terminals (expressed as temperature) is the System Temperature, which has components from
the sky, the antenna and the receiver. It is given by

Tsys(ν) = ηRTA(ν) + (1− ηR)Tp + TR(ν) ≈ TA(ν) + TR(ν) (11)

where Tp is the physical temperature. Note that all of these quantities are functions of frequency, so I’ve
added that dependency to remind us.

The power that we record goes through the vagaries of being received (so amplified and noisified). The
power we record over a bandwidth ∆ν is then

P = kGsysTsys∆ν (12)

however, we always specify noise temperatures as input-referred. So, if someone says “the receiver tempera-
ture is TR” the system temperature will be

Tsys = TR + Tsky + Tsp + Tatm K (13)

where Tsky is the integral of TA over the upper hemisphere, Tsp is the “spill-over” temperature (integral over
the lower hemisphere not looking at the sky) and Tatm is the radiometric temperature of the atmosphere.
Note that Tsp and Tatm are technically contained in the TA part, however it is convenient to have them
separate to spare the poor astronomer from having to keep track of our (currently) life-sustaining planet.
Tatm is generally negligible for us (impacted by the ionosphere at our frequencies). See Fig. 1 for the spillover
temperature for HERA (using Nicolas’ beam patterns but assuming half goes back onto the sky + an added
10 K guess for the missing middle) and PAPER (using my somewhat quickly calculated HFSS model).

Figure 1: Estimate of the HERA and PAPER spillover temperatures. Uses the Cavendish beams, but
assumes half of that power goes back on the sky given all of the adjacent metal and adds in 10 K as an
estimate of the contribution from the central hole. This will go away if a central cone is used. PAPER uses
my quick HFSS-calculated beams.

Note that if the source field is expressed in brightness temperature TB , then

TA =
D

4π

∫ ∫
TB(θ′, φ′)P (θ′ − θ, φ′ − φ)dΩ′ (14)

where D is the directivity.



3 Sensitivity Parameters

We define the Sensitivity of an antenna, Γ, as

Γ =
Ae

2k
(15)

which we generally express in units of Kelvin per Jansky [K/Jy]. Therefore we can rewrite Eq. 14 as

TA = Γ

∫ ∫
B(θ′, φ′)P (θ′ − θ, φ′ − φ)dΩ′ (16)

Another parameter used is the Source Equivalent Flux Density (SEFD) which can be thought of
in two different ways:

1. it is the strength of a point source at boresight that would double the system temperature

2. it is the system temperature expressed in Jansky

They both equivalently yield

SEFD =
Tsys

Γ
=

2kTsys
Ae

(17)

Note that the SEFD (i.e. the ratio Ae/Tsys) is the “native” measurement made by an antenna. Sepa-
rating the two quantities requires additional information and is generally difficult to do very accurately.

4 Polarization

Polarization complicates things. For antenna work, we generally work in relative polarization and we mea-
sure/compute co-polar and cross-polar beam patterns. These are either orthogonal linear (which we are
denoting E and N) or circular polarizations (RH/LH). Although it is not how it is actually done, it is in-
structive to think of the antenna under test as fixed to looking at zenith and we run another transmitter
antenna around on a great circle and measure what we get.

For co-polar,
What else?

5 Matching

The impedance matching between the antenna and the first stage LNA has a dominant effect in the passband
response of the system. It both affects the passband gain of the LNA and therefore the smoothness of the
passband (critical figure of merit for HERA) as well as the receiver noise, therefore impacting sensitivty,
especially at higher frequencies where the sky noise term does not dominate.

5.1 Power matching

The Transducer Power Gain of a LNA, GT , is defined as the ratio of the power delivered to the load to the
power available from the source. For maximum power transfer, the antenna impedance, ZA, needs to match
the complex conjugate of the LNA input impedance, Zin. A mismatch between these two is likely to be
frequency dependent and it introduces spectral structure in the passband response of the pair antenna+LNA.
This of course translates into a higher antenna+LNA transfer function in the Delay Spectrum at delays larger
than 0. This is undesired for HERA.

GT also depends on the S-parameters (S11, S12, S21, S22, assuming a 2-port amplifier) of the LNA and
the output load impedance, ZL. However this is typically 50Ω and the output mismatch in minimal.



GT (ν) =
|S21|2(1− |ΓA|2)(1− |ΓL|2)

|1− ΓAΓin|2|1− S22ΓL|2
(18)

Zin(ν) = Z0
1 + Γin(ν)

1− Γin(ν)
(19)

ZA(ν) = Z0
1 + ΓA(ν)

1− ΓA(ν)
(20)

ZL(ν) = Z0
1 + ΓA(ν)

1− ΓL(ν)
(21)

5.2 Noise matching

In order to maximise the ratio Ae/Tsys one needs to minimise the receiver temperature as shown by

Ae(ν)

Tsys(ν)
=

Ae(ν)

ηRTA(ν) + (1− ηR)Tp + TR(ν)
(22)

The receiver temperature, TR, can be calculated form the Receiver Noise Figure, FR, and the physical
temperature, Tp as

TR(ν) = Tp(FR(ν)− 1) (23)

For a LNA FR is calculated as

FR(ν) = Fmin(ν) +
Rn(ν)

GA(ν)
|YA(ν)− Yopt(ν)|2 (24)

where Rn is the noise resistance of the LNA and Fmin is the minimum noise figure. YA is the antenna
admittance and Yopt is the optimum noise admittance of the LNA.

ZA(ν) = (YA(ν))−1 = (GA(ν) + iBA(ν))−1 (25)

Zopt(ν) = (Yopt(ν))−1 = (Gopt(ν) + iBopt(ν))−1 (26)

Consequently, for minimum receiver temperature the antenna impedance, ZA, needs to match the opti-
mum noise impedance of the LNA, Zopt. It is important to note here that the optimum noise impedance of
the LNA, Zopt, and the input impedance of the LNA, ZA, are typically different and this imposes a trade-off
in the design.

5.3 Trade-off between power and noise matching in actual system

As described in (1) the difference between power and noise match implies that one typically needs to compro-
mise between a good power match (match of the antenna impedance to the input impedance of the LNA for
a smooth passband for example) and a low receiver noise (match of the antenna impedance to the optimum
noise impedance of the LNA).

Furthermore, attempts to introduce matching networks in between the antenna and the LNA to enhance
either one or the other may result in further losses and therefore a lower system temperature as shown below.



Figure 2: S11 of the HERA balun with and without matching network.

Figure 3: Losses in the proposed matching network.

5.4 System Impact

If we define a antenna-LNA mismatch efficiency as ηm = 1 − |Γm|2, then we can express the ratio Ae/Tsys
before or after this “loss” in the receiving chain, therefore both signal and noise get multiplied by this
efficiency and

Ae(ν)/Tsys(ν) = (Ae(ν)ηm(ν))/(Tsys(ν)ηm(ν)) (27)

Γm(ν) =
ZA(ν)− Zin(ν)

ZA(ν) + Zin(ν)
(28)

It is worth noticing that in cascaded systems made of different stages connected in series (eg. stage
0 is the antenna, stage 1 is LNA, stage 2 is a filter, stage 3 is the cable, stage 4 is the PAM, etc.) the
ratio Ae/Tsys is constant independently of where in the system it gets calculated since both numerator and
denominator (signal and noise) are weighted by the gains and losses of the system.

Furthermore, in the Ae/Tsys calculations above we have assumed that the receiver temperature is dom-
inated by the noise temperature of the first LNA since in a cascade system losses and noise in later stages
are weighted down by the gain of the amplifiers in front when referring it to the input of the system. This
means that adding losses to suppress reflections due to mismatch in later stages of the receiving chain hardly
affects the Ae/Tsys ratio if enough gain is provided since



FR = F1 +
F2 − 1

G1
+
F3 − 1

G1G2
+ ...+

FN − 1

G1G2...GN−1
(29)

and for a passive device the noise figure, F , is equal to its attenuation, L (inverse of the gain, G).

F = L = 1/G (30)
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