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ABSTRACT
Radio Frequency Interference (RFI) refers to the anthropogenic noise mixed in the data captured by the radio telescopes. RFI
creates a sharp discontinuity in the data captured by the Hydrogen Epoch of Reionization Array (HERA) telescope. These sharp
discontinuities can affect the overall sensitivity of HERA’s measurements in two main aspects: the magnitude of RFI is much
greater than the intrinsic sky signal, and unflagged RFI introduces errors due to the Fourier transform in HERA’s data processing
procedure. Therefore, identifying RFI in HERA data sets is crucial. We present an RFI detection Convolutional Neural Network
(CNNRFI) that identifies RFI in HERA’s data sets to address this issue. The network is trained using simulated HERA visibility
data and artificially modeled RFI, where we treat the modeled RFI as the “ground truth” in the training data set. We evaluate the
performance of CNNRFI both by comparing the accuracy and precision of RFI found by that CNNRFI to an unseen test dataset of
the simulated RFI, as well as predictions made by the Sky-Subtracted Incoherent Noise Spectra (SSINS), an established method
for identifying RFI. CNNRFI achieves a precision of 99% in comparison with the HERA simulated data, and a agreement of
67.7% compared to SSINS. This larger discrepancy with SSINS can be explained by the aggressive flagging nature of SSINS,
which tends to flag pixels beyond the ones identified in the algorithm as a means of reducing contamination from data below the
noise floor.
Key words: dark ages, reionization, first stars — methods: data analysis — methods: observational

1 INTRODUCTION

The Hydrogen Epoch of Reionization Array (HERA) telescope is
a radio interferometer seeking to detect the 21cm signal from the
Epoch of Reionization. Detecting this signal potentially provides us
with clues to understand the ionization process of the first stars and
galaxies in the early universe (DeBoer et al. 2017). HERA captures
sky visibilities, and pairs of visibilities are combined to produce a
power spectrum. HERA’s visibility data consists of four dimensions:
baseline (defined as a pair of antennas, and measured in meters), time
(measured in seconds), frequency (measured in MHz), and instru-
mental polarization. Anthropogenic noise is mixed within the HERA
data, and we refer to this human made noise as the radio frequency
interference (RFI). Examples of RFI includes FM radio and digital
TV signals. RFI is usually two to three orders of magnitude larger
in amplitude compared to the sky signal, and this RFI is typically
narrow in frequencies. We visualize both the sky data and the RFI
using a so-called waterfall plot (Figure 1).
Because of its high amplitude and narrow frequency, RFI creates

sharp discontinuities in HERA data. These sharp discontinuities cre-
ate disruptions in the accuracy of HERA’s data in two aspects. The
first aspect is that the magnitude of these signals swamps the the
sky signal. The second aspect is related to HERA’s data processing
procedure: the raw data captured by the telescope is sent through a
Fourier transform. Consequently, the sharp discontinuities at narrow
frequencies created by the RFI get transformed into high magnitudes
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Figure 1. A waterfall plot of HERA data. Because HERA’s raw data is a
complex quantity, we have taken the absolute value of the visibilities. We
have also taken the base-10 logarithm of the resulting amplitude to better
visualize the sky data because RFI is about 2 to 3 orders of magnitude
brighter than the background. The x-axis of the plot represents frequency in
units of MHz, and the y-axis represents time in units of seconds. The narrow
yellow stripes significantly brighter than the background are the RFI. The
bright strips at around 100 MHz are the FM radio signals, and at 137 HZ are
the low Earth orbit communications satellites (ORBCOMM) signals.

of power at all modes, and therefore creating significant inaccuracies
in the data (Offringa et al. 2019). Further complications arise when
one tries to categorize whether a signal is a RFI or not: one may
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falsely categorize a non-RFI signal as a RFI, which is commonly re-
ferred to the false positive case, or onemay falsely categorize a RFI as
a non-RFI, referred to as the false negative case. Compared with the
false-positive case, if the false-negative case remains in the raw data
and gets sent through the Fourier transform, the false-negative RFI
will end up adding high power magnitudes to all modes. Therefore,
comparatively, the false-negative scenario hurts the data accuracy
more than the false-positive case, and optimally, we should try to
minimize the number of false negative cases when detecting RFI.
In this paper, we present our machine learning RFI detection al-

gorithm developed in TensorFlow (Abadi et al. 2016) – Convolu-
tional Neural Network RFI detector (CNNRFI). Machine learning is
a branch of artificial intelligence, and in our use case the machine
learning algorithm improves the accuracy of predictions through the
use of training data. Our model relies heavily on the concept of deep
learning, specifically the convolutional neural network (commonly
known as CNNs) (Fukushima & Miyake 1982; LeCun et al. 1999;
Krizhevsky et al. 2017). Instead of using a single layer to encode in-
formation, we use multiple layers to encode and decode data, which
allows for extracting higher-level, detailed RFI structures from the
raw input HERA data. CNNRFI’s development is based on the archi-
tecture of the U-Net RFI implementation (Ronneberger et al. 2015;
Akeret et al. 2017) in the sense that we use max pooling layers to
condense the size of the input space, followed by deconvolution lay-
ers to return to the original size of the dataset. However, instead
of implementing a uniform number of filters for each convolutional
layer, CNNRFI has a increasing number of filters in convolutional
layers, and therefore, the neural network can capture more features
of the RFI in one image in each proceeding layer. After reaching the
deepest layer, the networks then invert the process until it reaches the
output prediction layer. CNNRFI is also based on the architecture of
DFCN (Kerrigan et al. 2019).
Efforts have been made to automate the RFI detection process

using more traditional statistical methods, such as Sky-Subtracted
Incoherent Noise Spectra, which subtracts the slowly varying sky
signal via numerical calculation to separate RFI (Wilensky et al.
2019). In Sec. 3.2 of this paper, we compare the RFI detection results
from CNNRFI to those provided by SSINS to evaluate the perfor-
mance of CNNRFI on real data.
This paper is outlined as follows. Sec. 2 introduces the architecture

of CNNRFI in detail. Sec. 3 discusses the performance of CNNRFI
in two aspects. We first generated a data set unseen by CNNRFI
but similar to the structure of the training data set– the evaluation
data set – from hera_sim, HERA’s simulation data. We then ran
CNNRFI on this evaluation data set and compared its RFI predictions
to the “ground truth” – the RFI indicated in the input waterfalls.
We also compared CNNRFI’s detection result to that produced by
SSINS. Sec. 3 discusses the procedures and results of these two
evaluations. Finally, in Sec. 4, we conclude with discussing possible
future improvements on CNNRFI.

2 METHOD

2.1 CNNRFI architecture

The architecture of CNNRFI is similar to the structure of a U-Net RFI
(Ronneberger et al. 2015; Akeret et al. 2017): both these networks
uses multiple convolutional 2D layers to extract features. When pass-
ing through a convolutional 2D layer, the data goes through a filter
that responses distinctly to data with different scales, and the layer
provides a feature map that summarizes the RFI picked out. How-
ever, while the U-Net architecture uses the same convolutional layer

structures throughout, CNNRFI increases the number of features by
using an increasing number of filters on convolutional layers as the
network learns the data deeper. After finally applying 128 filters, the
architecture inverts the process by decreasing the number of filters as
the layers approaches the output prediction layer. This architecture
style is commonly known as the image pyramid (Lin et al. 2017).
The structure of CNNRFI is also similar to the DFCN’s architecture
(Kerrigan et al. 2019), but implements the network architecture in
Keras (Chollet et al. 2015) instead of TensorFlow.
The neural network starts with three convolutional layers. Com-

pared to a typical Artificial Neural Network (ANN) (Lecun et al.
1998), the standard 2D convolutional neural network (CNN) pre-
serves the spatial dependence of our input image (Lecun et al. 1998;
Kerrigan et al. 2019). This spatial dependence preservation is im-
portant because we want to preserve the relative position of RFI and
sky data on the input waterfall image. Following these three convo-
lutional layers is a batch normalization layer, which re-standardize
the input to a neural network. This layer is intended to accelerate
the data training process, as well as regularize the data coming out
of the three convolutional 2D layers. Using this layer reduces gen-
eralization error (Ioffe & Szegedy 2015). The output from the batch
normalization layer is then down-sampled with a max pooling layer.
The max pooling layer picks out the highest pixel value in a small
region of the image (a square of 2 × 2 pixels in our case) and re-
duces the size of the input image accordingly. The combination of:
(1) three convolution 2D layers; (2) a batch normalization layer; and
(3) a max pooling layer “bundle” is put together as a “stack layer”.
There are four stack layers in total in our model, and each stack layer
is concatenated to a up sampling 2D layer of corresponding size
later in the network. The up sampling 2D layer doubles the input
dimension and performs the inverse of the convolutional 2D layer
operation. We then take the output from our stack layer and concate-
nate it with the up sampling 2D layer, and this up sampling 2D has
equal time and frequency dimension with with stack layer output.
This technique is named “skip connections” (Long et al. 2015; He
et al. 2016), and has been shown to prevent overfitting the deep layers
near the center of the U-Net. Concatenating the convolutional layer
and up sampling 2D layer speeds up the training process. This layer
concatenation also takes into account higher-order non-linear effect
in the network. When the higher-order nonlinear effect in the net-
work becomes dominant in layers, the network tends to over-fit data
during the training process. Concatenating our stack and up sample
layers avoids data overfitting in when training the network (Kerrigan
et al. 2019). Finally, the activation function “softmax” is applied on
the layer before the network makes a prediction. Before applying the
softmax activation function to the final layer, some of the data com-
ponents could be negative or larger than one. The softmax function
normalizes the function into values between [0, 1] (Bridle 1989).
We used categorical crossentropy as our loss function, which quan-
tifies the differences between two probability distributions. In our
case, there are two “categories” for our input data (either “flagged
pixel” or “unflagged pixel”), so we use an activation and loss function
suitable for classification problems. We also used adaptive moment
estimation, Adam, as our network optimizer (Kingma & Ba 2017).

A detailed description of CNNRFI’s architecture can be found in
Table 1, and Figure 2 presents a visualization the neural network.

Traditional convolutional neural networks commonly restricts the
dimension of input data (Krizhevsky et al. 2017). In contrast with
traditional architectures, we passed in (None, None, None, None)
as the shape of the input data to train the network. Through not
providing the shape of the training data for the network, we open up
the flexibility for data’s shape to put in CNNRFI – as long as the input
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Figure 2. A visualization of the CNNRFI’s architecture. As shown in the figure, there are many layer structures between the waterfall input and output, and these
layers increase the network’s accuracy to capture RFI in an image (Schmidhuber 2015). Due to our "flip and cut" method of pre-processing the data mentioned
in section 2.2, CNNRFI has no restriction on the dimensions of the input image. For waterfalls with a non-16 multiple dimension of frequency or time, the
immediate waterfall output from the neural network will have their extended dimensions, with both frequency and time a multiple of 16, but during our data
post-processing stage, we cut the waterfall to its original input shape. Section 2.1 and Table 1 provides a detailed description of the network’s structure.

data are multiples of 16, the CNNRFI is able to make a prediction on
the data. To make the model more flexible, we designed a special way
of preparing the raw data before passing the data to the architecture,
which we will discuss in the data preparation section.

2.2 Data Processing

The input data has four dimensions: baseline, time, instrumental
polarization, and frequency (DeBoer et al. 2017). For simplicity,
we fix one baseline and one polarization in the input data. After
down-selecting the baseline and the polarization in the data set,
the original four-dimensional data captured by HERA is reduced to
an array with two dimensions: time and frequency. The next data
preparation step is to adjust the input data’s time and frequency into
appropriate dimensions. Although CNNRFI restricts every input data
dimension to be multiples of 16, we allow the input data shape in
any dimension by applying the "flip and cut" method on the raw
waterfall image. When a raw data set is passed in, our data pre-
processing algorithmfirst determineswhether the time and frequency
dimensions are multiples of 16. If a dimension is not a multiple of 16,
our algorithm will first flip the entire data set across the last column
(or row, depending on whether the non-16 multiple dimension is
frequency of time) of this dimension, and then concatenate the flipped
array with the original array on the flipping axis. Then, the algorithm
finds the minimum multiple of 16 larger than the current dimension,
and cuts the concatenate array at the nextmultiple of 16. For example,
if the inputwaterfall takes the shape of (45, 1536) after down selecting
one baseline and one polarization, the algorithm will recognize that

1546, the frequency dimension, is a multiple of 16, whereas the time
dimension, 45, is not. The smallest multiple of 16 larger than 45 is 48.
The algorithm will then use the 45th column of data as the "flipping
axis" to flip the entire waterfall across the 45th time column, and
concatenate the two arrays together. Following the concatenation,
the algorithm with cut the time axis of the expanded array, which is
in the shape of (89, 1536), at 48, resulting in an array of shape (48,
1536). See figure 3 for a visual illustration of this procedure. The
same procedure applies when the frequency axis is not a multiple
of 16: the algorithm will flip the data across the last frequency row
and cut off the frequency dimension at the next multiple of 16 of the
raw waterfall frequency dimension. If both the time and frequency
dimensions are not multiples of 16, the algorithm will apply this
procedure twice: the algorithm will adjust the dimension of both
time and frequency to multiples of 16.

This "flip and concatenate" data-expanding method is the
smoothest way to introduce the adjusted waterfall to the neural
network, because flipping across the last time column and/or fre-
quency row avoids introducing new discontinuities to the waterfall.
If new discontinuities are introduced to the waterfall at the data pre-
processing stage, CNNRFI can potentially interpret this artificially
introduced discontinuity as a RFI, and consequently, this discontinu-
ity introduced by waterfall pre-processing can negatively influence
the CNNRFI’s training process to find the real noise. Due to this
benefit, we adopt the "flip and concatenate" method to adjust the
dimensions of the raw waterfall array.

Furthermore, to reduce the complications introduced by complex
phases, we take the absolute value of the data set to make the entire
waterfall real and positive. Because RFIs are, in general, two to three

MNRAS 000, 1–8 (2015)
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Table 1. The complete CNNRFI model. In the table, Conv2D stands for
convolutional 2D layers, Max Pool stands for Max Pooling 2D layers, Batch
Norm stands for batch normalization layers, and the stack layer stands for
the bundle of 3 convolutional 2D layers - batch normalization layers - Max
Pooling 2D layer

Layer Type Parameter Number Layer Connected

Input Layer 0 N/A

Conv2D0 160 input1

Conv2D1 2320 Conv2D0

Conv2D2 2320 Conv2D1

Batch Norm0 64 Conv2D2

Max Pool0 0 Batch Norm0

Conv2D3 4640 Max Pool0

Conv2D4 9248 Conv2D3

Conv2D5 9248 Conv2D4

Batch Norm1 128 Conv2D5

Max Pool1 0 Batch Norm1

Conv2D6 18496 Max Pool1

Conv2D7 36928 Conv2D6

Conv2D8 36928 Conv2D7

Batch Norm2 256 conv2D8

Max Pool2 0 Batch Norm2

Conv2D9 73856 Max Pool2

Conv2D10 147584 Conv2D9

Conv2D11 147584 Conv2D10

Batch Norm3 512 Conv2D11

Max Pool3 0 Batch Norm3

Up Sampling2D0 0 Max Pool3

Batch Norm4 512 Up Sampling2D0

Conv2D12 73792 Batch Norm4

Concatenate0 0 Stack0, Up Sampling2D0

Up Sampling2D1 0 Concatenate0

Batch Norm5 512 Up Sampling2D1

Conv2D13 36896 Batch Norm5

Concatenate1 0 Stack1, Up Sampling2D1

Up Sampling2D2 0 Concatenate1

Batch Norm6 256 Up Sampling2D2

Conv2D14 9232 Batch Norm6

Concatenate2 0 Stack2, Up Sampling2D2

Up Sampling2D3 0 Concatenate2

Batch Norm7 128 Up Sampling2D3

Conv2D15 2312 Batch Norm7

Conv2D16 18 Conv2D15

orders of magnitudes brighter than the sky background, we take the
log-10 of the entire array to make the background sky more visible,
both for human and the algorithm.

There is only one step to post-process the data after CNNRFI
makes a prediction on the waterfall: our data post-processing algo-
rithm takes the predicted data array and cut the array back to its
original shape. After multiple testing, we found out cutting the flag
array does not alter the relative position of those flags.

In summary, in the data pre-processing stage, if any or both of
the time and frequency axes are not in multiples of 16, the non-16
multiple axis will be adjusted to a expanded waterfall array with
multiple of 16 on both axes’ dimensions. The adjusted waterfall is
then taken the absolute value and log-10 before being passed into the
CNNRFI. In the data post-processing stage, we cut the dimension of
the flag array to its original data input shape.

2.3 Training Dataset

We used two packages to build our training data: the Radio Interfer-
ometric Measurement Equation solver (RIMEz) 1 and ℎ4A0_B8<2.
We first used RIMEz to simulate our background sky signal, and we
used ℎ4A0_B8< to paint RFI on top of the waterfall background.

RIMEz simulate the background sky data by numerically compute
the fundamental visibility measurement equation for every correla-
tion and a single polarization:

+ 9: (a, C) =
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9:
+
?@

9:

+
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9:
+
@@

9:

]
(1)

=

∫
J 9CJ†: exp(−2c8a®1 · B̂/2)3B̂ (2)

where the coherency matrix is:

C =

[
� ( B̂, a) +&(B, a) * (B, a) − 8+ (B, a)
* (B, a) + 8+ (B, a) � ( B̂, a) −&(B, a)

]
(3)

The integration in equation 2 is across the entire sphere. A more
detailed discussion of the background sky simulation is discussed in
section 4.2.1 of Aguirre et al. (2021)

Upon obtaining the background sky data, we then use ℎ4A0_B8< to
paint three classes of RFI on top of the simulated sky data: base RFI,
dtv RFI, and scatter RFI. The base RFI includes bright bands dis-
cretely occurring at 0-100MHz, 400Hz, and 800-1000Hz. Hera_sim
empirically derives and simulates these base RFI (Parsons et al.
2012). Scatter RFI can occur at every frequency on the spectrum.
After experimenting with several different choices, we found that
giving scattering a 0.01 probability of occurring and 10% of the base
RFI’s amplitude most resembles the real data. Dtv RFI stands for
digital TV signal, and dtv appears discretely in the range of 800 -
1000 MHz in shapes of rectangular blocks. Similarly, after compari-
son with real data, we determined that the reasonable parameters for
the dtv signal are: 0.05 probability of occurring and 1% of base RFI’s
magnitudes. All components of RFIs are stretched by a coefficient
of 7.5 to achieve a higher real data RFI resemblance. Figure 4 is a
example simulated data waterfall slice.

Each data waterfall is created by adding up the background sky
signal, base RFI, scatter RFI, and dtv RFI. This process is looped
over for 1000 times so that 1000 waterfalls of data sets are created.
The 1000 waterfalls are then divided into 700 waterfall sets and 300

1 https://github.com/UPennEoR/RIMEz
2 https://github.com/HERA-Team/hera_sim
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Figure 4. This is an example training data waterfall. The bright stripes ap-
pearing from 0-100 MHz, 400 MHz, 800 - 1000 MHz is the base RFI from
hera_sim. The soporatic bright dots spread across the spectrum is the scatter
RFI, and the blocks appearing at 800 MHz is DTV RFI.

waterfall sets.The 700 waterfall sets are used to train the CNNRFI
model, while the rest of the 300 waterfalls are used as validation data
to evaluate the performance of the CNNRFI architecture. Within
each waterfall, there are 64 time axis and 1024 frequency axis. The
training data for CNNRFI is in the shape of (700, 64, 1024), and the
validation data for CNNRFI takes the shape of (300, 64, 1024).

3 EVALUATION

3.1 Training Results

For the first evaluation, we generated 300 new waterfalls the same
way we generated the training and validation data set. The 300 new
data sets are composed of the same elements as the training and
validation data: background sky signal, base RFI, scatter RFI, and
dtv RFI. We retained the training data set’s chance of occurring and
the amplitude for both scatter RFI and dtv RFI. Despite the newly
generated waterfall arrays’ resemblance to the network’s training
and validation data, these 300 new waterfalls are completely unique
from the 1000 training and the validation waterfalls, meaning that
CNNRFI has never "seen" these 300 data waterfalls prior to making
a prediction. We evaluate the quality of the predicted data in two
aspects: the number of false negative cases, where the data point is
a RFI signal in the simulation data but CNNRFI did not flag the RFI
signal, and the number of false positive cases, meaning that the data
point is a sky signal in the simulation data, but CNNRFI flagged the
data point as RFI.

Figure 5 provides a visualization of CNNRFI’s prediction result
on one waterfall slice. To quantify CNNRFI’s model prediction ac-
curacy, we calculated the average occurrence percentage of true pos-
itive, false positive, and false negative cases. The single waterfall
occurring percentage is calculated by the number of specific cases
divided by the total number of points on the waterfall plot: 64*1024
= 65536:

%>22DA8=6 =
#20B4B

65536
(4)

where #20B4B stands for the number of specific cases (true positive,
false positive, false negative) in one waterfall plot. Because we used a
total of 300 waterfall plots to test the accuracy of the architecture, we

MNRAS 000, 1–8 (2015)
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Figure 5. The true positive, false positive, and false negative cases of CN-
NRFI’s prediction on one simulated data waterfall. Data points marked by
white stands for true positive cases, blue points stands for false negative cases,
and black points stands for true positive cases. There are very few false nega-
tive and false positive cases, so the blue and black points are not very visible
in the plot.

Table 2.The average occurrence percentage of the true positive, true negative,
false positive, and false negative cases of CNNRFI’s prediction on simulated
data

Cases % Average Occurrence

True Positive 4.4%

True Negative 95.5%

False Positive 0.0046%

False Negative 0.003%

define the N values the average number of each cases occurring. The
average number of each cases’ occurrence is calculated by summing
up the number of one specific case throughout the 300 waterfalls and
dividing by 300.

#20B4B =

∑
#F 5

300
(5)

where NF 5 stands for the number of cases in each category in each
waterfall. Table 2 shows a result of the average occurrence percentage
for each cases.
As mentioned in the introduction (section 1) of the paper, the false

negative cases damages data accuracy the most. We can see that
the % of average occurrence of false negative cases only consists
0.003% in each of the data waterfall, and this result indicates that
when making predictions on the simulated data, CNNRFI is efficient
at minimizing the false negative cases to produce high quality flag
predictions. The % average occurrence of false positive cases is
0.0046%, which is marginally more than the percentage of the false
negative cases. However, the percentage still remains small compared
to all the true cases. Aside from the small percentage of occurrence
rate, the false positive cases harm the data’s accuracy less than the
false negative case. Therefore, it is safe to conclude that our model
has high precision in predicting flags in the simulated data.

Table 3.The average occurrence percentage of the true positive, true negative,
false positive, and false negative cases of CNNRFI’s prediction compared to
SSINS’s flags

Cases % Average Occurrence

True Positive 3.6%

True Negative 64.1%

False Positive 0.3%

False Negative 32.0%

3.2 Comparison with SSINS result

Evaluating the performance of CNNRFI on real HERA data intro-
duces one complication: there is no "ground truth" indicating which
data point is RFI. To resolve this complication, we used another
non-machine learning RFI detection algorithm: Sky-Subtracted In-
coherent Noise Spectra (SSINS) to predict RFI in the same set of
real HERA data (Wilensky et al. 2019). We then treat the result from
SSINS as the “ground truth” and compare CNNRFI’s RFI prediction
result against the prediction produced by SSINS.

For both SSINS and CNNRFI, we passed in 1840 raw HERA data
files. Due to computing memory limitation, we divided 1840 files
into groups of 8, and we programmed SSINS to produce one RFI
prediction array on every 8 data files. For each prediction, we set
the stream significance (s) to be 20, other significance (o) to be 5,
and threshold (t) as aggressive as 0.1. SSINS made a total of 230
predictions, andwe stacked all 230 arrays together to produce oneRFI
flag prediction on all raw data files. Similarly, we divided 1840 files
into groups of 8 files for CNNRFI to make a prediction. Within each
group of files, we iterate across all the data file to generate arrays of
data for each antenna pair and polarization combinations. However,
we filtered through all the arrays and only selected data with auto-
correlation on antenna pairs and cross-correlation on polarizations
due to how CNNRFI is trained. After filtering through data in each
group, we then use CNNRFI to make a prediction on each filtered
data array. We added all the predicted RFI arrays together within
each group and divided the sum by the number of array samples to
normalize the RFI prediction array to be between 0 and 1. We also
added a threshold component when producing the final array: the
final produced RFI prediction array will only flag a pixel is the pixel
is predicted as RFI in more than 10% of the data arrays.

We evaluated the result from CNNRFI to that of SSINS using
four matrices: true positive, true negative, false positive, and false
negative. The occurrence percentage is calculated using the same
method as section 3.1: counting the number of each cases and divide
them by the total number of pixels on the waterfall, as show in
equation 6

%>22DA8=6 =
#20B4B

3680 ∗ 1536
=
#20B4B

5652480
(6)

Table 3 shows the occurring percentage of each cases in this com-
parison, and figure 6 presents a visualization of all four cases.

The difference in RFI predictions between SSINS and CNNRFI
can be explained by SSINS’s aggressiveness when flagging RFI.
Compared to CNNRFI, SSINS tends to overflag RFIs to make sure
that most of the RFI in the data gets captured. The large-area RFI
flagging is likely to produce a safe dataset that excludes the major-
ity of RFIs in the raw data. CNNRFI, on the other hand, is rather

MNRAS 000, 1–8 (2015)
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Figure 6. The true positive, true negative, false positive, and false negative
cases of CNNRFI’s prediction compared to that produced by SSINS (Wilen-
sky et al. 2019). In the context of this figure, the "true" and "false" are relative
to the SSINS output instead of the measure of the "real" underlying RFI.
Because there are not many false positive cases, the red part are not very
visible in the figure.

conservative at flagging pixels as RFI, because our machine-learning
algorithm tends to target only the pixels that "looks like" RFIs. There-
fore, a future test for CNNRFI is that we can train our neural network
using flags produced by SSINS, and compare the result from SSINS
and CNNRFI using a new, raw data set from HERA. Furthermore, it
is worth noting that unlike CNNRFI, SSINS produced flags across
some of the time dimensions, defying the definition of RFI. This
"RFI" across time dimensions potentially resulted from the discon-
tinuity at the boundary of each files – there are some discontinuities
when concatenating each file together across the time dimension, and
SSINS detected these discontinuities in time and interpreted them as
time "RFI".
Although non-machine learning methods to detect RFIs like

SSINS already exist, it is still significant to implement RFI detection
via machine learning, because according to empirical data, machine-
learning algorithms reduces the wall-clock time for data processing
compared to non-machine learning methods (Kerrigan et al. 2019).
Therefore, we suspect that it takes less wall clock time for CNNRFI’s
to predict flags in raw data compared to non-machine learning algo-
rithms. This time advantage is crucial for HERA’s data processing
because HERA records around 4TB of raw data for every 12 hours
of observing (DeBoer et al. 2017), and in the future, HERA will be
fully constructed with 350 antennas and we will then expect HERA
to record around 50 TBs of data per day. Under current circum-
stances, if an algorithm takes more than 12 hours to process all the
raw data recorded in 12 hours of observation, unprocessed raw data
will end up piling up. Consequently, the algorithm will fail to keep
up with HERA’s data recording overtime. Thus, using CNNRFI to
filter RFI contributes to developing a faster data cleaning process
under HERA’s time constrain, and CNNRFI’s fast data-processing
nature is even more crucial for HERA’s data processing procedure
in the future when HERA will be fully connected with 350 antennas
and record a larger amount of data.

4 CONCLUSIONS

In this paper, we demonstrated our machine-learning RFI detection
algorithm – CNNRFI. CNNRFI is constructed through deep con-
volutional neural network combined with layer concatenation, and
is trained on 700 waterfalls constructed using RIMz (Aguirre et al.
2021) and ℎ4A0_B8<3. The mock RFI from ℎ4A0_B8< establishes the
“ground truth” for evaluating the performance of CNNRFI. We then
evaluated CNNRFI’s prediction by comparing the neural network’s
RFI prediction to the mock RFI in 300 newly generated data water-
falls.We calculated the true positive, true negative, false positive, and
false negative numbers for each waterfall, averaged the number of
each cases over 300 waterfalls, and calculated the average percentage
of the occurrence of each cases. The result indicates that the false
negative case, the error that damages data accuracy the most, only
occurs in 0.003% in a waterfall on average, and thus demonstrating
that CNNRFI is able to predict RFI on simulated data with high
accuracy.

We also used CNNRFI to predict RFI in real data captured by
HERA. Because we do not know which data point is RFI in real data,
we compared CNNRFI’s result to that produced by SSINS. In this
comparison, we treated SSINS’s result as the “ground truth”, and
found out that CNNRFI agrees with 67.7% of the RFI detected by
SSINS. We also found out that the false positive percentage is 0.3%,
and the false negative percentage is 32%. The discrepency between
the two model’s RFI prediction can be explained by "overflagging"
nature of SSINS: SSINS tends to minimize false negative cases by
spreading flags around dtected RFI. Compared to SSINS, CNNRFI
tends to target only the RFI-like pixels. SSINS and CNNRFI’s dif-
ference in flagging aggressiveness is discussed in detail in section
3.2. Furthermore, empirical data suggests that CNNRFI has a advan-
tage reducing the wall clock time in processing the raw HERA data
compared to other non machine-learning methods (Kerrigan et al.
2019), and therefore CNNRFI contribute to a building a faster raw
data processing procedure for HERA.

In the future, we would like to expand the category of mock RFI
in our training data set. Real data captured by HERA may include
RFI that are not scatter RFI, dtv RFI, or base RFI. To make our
training data set more realistic, we will add in random RFI aside
from base RFI, dtv RFI, and scatter RFI. A good test for CNNRFI’s
ability to capture RFI accurately is to train CNNRFI using the flags
produced by SSINS in section 3.2. We will then pass in another set
of raw data files for both SSINS and CNNRFI to make predictions,
and compare the prediction results from two algorithms. We will
also test CNNRFI’s performance by comparing the results produced
by CNNRFI to other RFI detection algorithms aside from SSINS.
We also envision expanding CNNRFI’s function. Specifically, we
would like to add data calibration functions to CNNRFI. In the real
data sets captured by HERA, abnormal sections not caused by RFI
can appear – for example, a defect data point may be caused by
antennamalfunctioning.Wewould like to revise CNNRFI’s structure
so that CNNRFI can also detect these defect data points aside from
predicting RFI.

The github repository for CNNRFI described in this paper can be
found at: https://github.com/listerchen319/cnn_rfi

3 https://github.com/HERA-Team/hera_sim
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