

Constant Offset in Cross-Polarized HERA IDR2.1 Data
Katherine Elder, CHAMP ASU, 08/16/18

This memo gives an overview of the project I worked on this summer with the
CAMPARE/CHAMP summer internship program at ASU. There are links in this document to
Jupyter notebooks and python scripts which contain the code and detailed explanations of the
process. All of the notebooks can be found on GitHub in the asu_hera repo, in the folder titled
crosspol_investigation.

1) Imaging Cross-Polarized Data
I started off this summer by trying (and failing) to
clean and calibrate the HERA IDR2.1 LST binned
cross-polarized data. I was attempting to do this so
that we could image the data and gain a better
understanding of what the polarized sky looks like.
Unfortunately, the CASA software is not built in a
way that allows you to directly work with
cross-polarized data. Ultimately, the only way that I
could generate images of the data was to trick
CASA into thinking the data was parallel polarized
and then running a clean command with the number
of iterations set to zero so that it did not actually run
a clean. The python script that does this is found
here. An example of these images is shown above, with Fornax A crossing the NE (or yx)
polarized field of view.

Once we had images of the uncleaned, LST binned data, we created videos of the entire run.
When we watched the videos, we noticed that there were objects that didn’t change with time.
We already suspected that most of the data we would be seeing in these images would be noise
caused by instrumentation feedback and signal bouncing. Our next step was to look at the data
and identify if these time-constant objects appear in the data, or if they were simply artifacts of
the movie-making process.

2) Waterfalls and Spectra: (Jupyter Notebook)
To take a closer look at the data, we created waterfall plots. These plots showed lines running
through the plot which did not change with time, which told us that these objects in the movies
were not artifacts in the images.

https://github.com/dannyjacobs/asu_hera/blob/master/crosspol_investigation/change_pol.py
https://github.com/dannyjacobs/asu_hera/blob/master/crosspol_investigation/Waterfall_Delay_Spectra.ipynb

Next, we took the time average and Fourier
transformed the data to plot the delay spectrum.
Because most of the structure from the sky is
averaged out, we are left with the additive
constant offset. By looking at the delay
corresponding to the peaks, we can find out
how far away these signals are originating. The
pattern we began noticing was that practically
every antenna pair produced a prominent peak
which corresponded to the length of the
baseline. But antenna pairs with longer
baselines would also have prominent peaks
away from baseline lengths. Sometimes these
peaks corresponded to the cable length, or
twice the cable length, but other times they
didn’t seem to have any specific physical
reference.

3) Delay Spectra amplitudes and delays (Jupyter Notebook)

We wanted to investigate of these patterns more, so we
came up with the idea to plot a matrix of every antenna
pair with the maximum peak amplitude from their delay
spectrum as the color scale. By doing this, we could take a
look at both patterns we noticed from the spectra and try to
identify other patterns.

Following up on that idea, we also plotted a map of the
antenna array, using the amplitudes and corresponding
delays as the color scale. To better look at both patterns,

baseline dependence and non-baseline dependent, we split up the window of where we looked
for peaks in the delay spectrum. Lastly, we also plotted the delay distance as a function of
baseline, which allowed us to easily see how far these signals were traveling before being picked
up by the antenna and how it related to the baseline.

https://github.com/dannyjacobs/asu_hera/blob/master/crosspol_investigation/Matrix_Amp_Delay.ipynb

These plots confirmed that the baseline plays a large role in these constant offsets within the
data. They also alerted us to the fact that the north dipole of antenna 84 is being flagged
somewhere along the pipeline.

4) Time-Averaged Visibility Model (Jupyter Notebook)
Now that we had a better idea of what factors were involved in creating the additive constant
offsets, we wanted to build a model of the time-averaged visibilities. We hypothesised that it
could be built with only a few variables: the autocorrelations, a baseline dependent delay, a cable
dependent delay, a baseline dependent amplitude factor, and a non-baseline dependent amplitude
factor. The equation for our model looks like this:

(V e e) e (V)V ij = εij ii
−i2πτ νci + V jj

−i2πτ νcj + P ij −i2πτ νaij ii + V jj

The full description of the
factors in the model and
how we built it can be
found in the Jupyter
Notebook. On the left is an
example of the model and
how it compares to the real
time-averaged data. As you
can see, the model does a
decent job of modelling the
real time-averaged

visibility, but there is still a lot of noise and small peaks it is missing.

5) Next Steps
There is obviously still room for improvement in how the model is designed. The next steps for it
will be to run the model through a fitter. After that, we can begin working to improve the way
the baseline and non-baseline peaks are found to hopefully increase accuracy.

More generally, there is still a lot we don’t understand about what is causing these additive
constant offsets. There is obviously a baseline component, although our data shows that it is
actually baseline plus 3 meters. But outside of the baseline, we are still not completely sure what
is causing the peaks. Further investigation is needed to form a better understanding of what
exactly is affecting the data.

https://github.com/dannyjacobs/asu_hera/blob/master/crosspol_investigation/Visibility_Model.ipynb

