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This memo gives an overview of the project I worked on this summer with the 
CAMPARE/CHAMP summer internship program at ASU. There are links in this document to 
Jupyter notebooks and python scripts which contain the code and detailed explanations of the 
process. All of the notebooks can be found on GitHub in the asu_hera repo, in the folder titled 
crosspol_investigation.  
 
1) Imaging Cross-Polarized Data 
I started off this summer by trying (and failing) to 
clean and calibrate the HERA IDR2.1 LST binned 
cross-polarized data. I was attempting to do this so 
that we could image the data and gain a better 
understanding of what the polarized sky looks like. 
Unfortunately, the CASA software is not built in a 
way that allows you to directly work with 
cross-polarized data. Ultimately, the only way that I 
could generate images of the data was to trick 
CASA into thinking the data was parallel polarized 
and then running a clean command with the number 
of iterations set to zero so that it did not actually run 
a clean. The python script that does this is found 
here. An example of these images is shown above, with Fornax A crossing the NE (or yx) 
polarized field of view.  
 
Once we had images of the uncleaned, LST binned data, we created videos of the entire run. 
When we watched the videos, we noticed that there were objects that didn’t change with time. 
We already suspected that most of the data we would be seeing in these images would be noise 
caused by instrumentation feedback and signal bouncing. Our next step was to look at the data 
and identify if these time-constant objects appear in the data, or if they were simply artifacts of 
the movie-making process.  
 
 
2) Waterfalls and Spectra: (Jupyter Notebook) 
To take a closer look at the data, we created waterfall plots. These plots showed lines running 
through the plot which did not change with time, which told us that these objects in the movies 
were not artifacts in the images.  

https://github.com/dannyjacobs/asu_hera/blob/master/crosspol_investigation/change_pol.py
https://github.com/dannyjacobs/asu_hera/blob/master/crosspol_investigation/Waterfall_Delay_Spectra.ipynb


 

 
Next, we took the time average and Fourier 
transformed the data to plot the delay spectrum. 
Because most of the structure from the sky is 
averaged out, we are left with the additive 
constant offset. By looking at the delay 
corresponding to the peaks, we can find out 
how far away these signals are originating. The 
pattern we began noticing was that practically 
every antenna pair produced a prominent peak 
which corresponded to the length of the 
baseline. But antenna pairs with longer 
baselines would also have prominent peaks 
away from baseline lengths. Sometimes these 
peaks corresponded to the cable length, or 
twice the cable length, but other times they 
didn’t seem to have any specific physical 
reference.  

 
 
3) Delay Spectra amplitudes and delays (Jupyter Notebook) 

 
We wanted to investigate of these patterns more, so we 
came up with the idea to plot a matrix of every antenna 
pair with the maximum peak amplitude from their delay 
spectrum as the color scale. By doing this, we could take a 
look at both patterns we noticed from the spectra and try to 
identify other patterns.  
 
Following up on that idea, we also plotted a map of the 
antenna array, using the amplitudes and corresponding 
delays as the color scale. To better look at both patterns, 

baseline dependence and non-baseline dependent, we split up the window of where we looked 
for peaks in the delay spectrum. Lastly, we also plotted the delay distance as a function of 
baseline, which allowed us to easily see how far these signals were traveling before being picked 
up by the antenna and how it related to the baseline.  
 

https://github.com/dannyjacobs/asu_hera/blob/master/crosspol_investigation/Matrix_Amp_Delay.ipynb


 

These plots confirmed that the baseline plays a large role in these constant offsets within the 
data. They also alerted us to the fact that the north dipole of antenna 84 is being flagged 
somewhere along the pipeline.  
 
 
4) Time-Averaged Visibility Model (Jupyter Notebook) 
Now that we had a better idea of what factors were involved in creating the additive constant 
offsets, we wanted to build a model of the time-averaged visibilities. We hypothesised that it 
could be built with only a few variables: the autocorrelations, a baseline dependent delay, a cable 
dependent delay, a baseline dependent amplitude factor, and a non-baseline dependent amplitude 
factor. The equation for our model looks like this: 
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The full description of the 
factors in the model and 
how we built it can be 
found in the Jupyter 
Notebook. On the left is an 
example of the model and 
how it compares to the real 
time-averaged data. As you 
can see, the model does a 
decent job of modelling the 
real time-averaged 

visibility, but there is still a lot of noise and small peaks it is missing.  
 
 
5) Next Steps 
There is obviously still room for improvement in how the model is designed. The next steps for it 
will be to run the model through a fitter. After that, we can begin working to improve the way 
the baseline and non-baseline peaks are found to hopefully increase accuracy.  
 
More generally, there is still a lot we don’t understand about what is causing these additive 
constant offsets. There is obviously a baseline component, although our data shows that it is 
actually baseline plus 3 meters. But outside of the baseline, we are still not completely sure what 
is causing the peaks. Further investigation is needed to form a better understanding of what 
exactly is affecting the data.  

https://github.com/dannyjacobs/asu_hera/blob/master/crosspol_investigation/Visibility_Model.ipynb





