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1 Introduction

The purpose of this document is to explore the first two moments of reduced y?2
statistics of Gaussian random variables, with inverse variance and inverse co-
variance weighting. There are two main results, which are not novel to humanity
but I reckon are useful to be looked at in tandem.

1. When correlations are present and inverse-covariance weighting is chosen,
the expected value is 1 and the variance is 2/N. Since we derive this
with an arbitrary covariance matrix, it also holds for the uncorrelated,
inverse-variance weighted case.

2. When correlations are present but inverse variance weighting is chosen,
the expected value of the statistic is still 1, but the variance is larger than
2/N. This means failing to account for correlations and choosing inverse-
variance weighting can produce x2 values that appear in some instances
highly anomalous but in actual fact have relatively low significance when
the data is modeled correctly.

2 Definitions

Suppose {X; : i = 1... N} are jointly Gaussian random variables with! (X;) = 0
and (X;X,;) = C;; (consider these as matrix elements of a matrix, C'). I define
two statistics: inverse-covariance weighted reduced 2,

1 _
X2 = NZXin(C Yij» (1)
]

and inverse-variance weighted reduced x?2,
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IThis is just a convenient choice essentially reflecting the assumption that you’ve modeled
the means of your variables correctly. Exploration of incorrect mean modeling is left as future
work.
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3 Result1l

First I show that (x?) = 1.

08) = 3 Oy XiXy) Q)

1 ’ 1

- N - (C7)i;Cij (4)
1 _

— Li(C10) (5)
1

— () )

—1 (7)

Here tr(-) denotes the trace, and I is the identity matrix of dimension equal to
N. T've used the fact that C is symmetric and

tr(AB) = Y Ay;BY. (8)
Now I compute Var[x2] = ((x2)%) — (x2)2. First,
<(X5)2> = % Z (C71)i (CT (X X; X0 Xy). 9)
ikl

Assuming Gaussianity, we can relate the four-point correlation function of a
Gaussian to its two-point function by Isserlis’ theorem,

(XiX; X Xp) = CiCri + CirCjy + Ciy Ciy,. (10)
If we plug Equation 10 into Equation 9, we get
(x3)*) = % (tr (C71C)* + 2tr (0*100*10)) (11)
= %(NQ +2N) (12)
=1+ % (13)
Using what we derived above, namely that (x2?) = 1, we have
Varl?] = ((2)) ~ (63 = = (14)
4 Result 2
It is easy to show that (x2) = 1:
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For the variance, again using Isserlis’ theorem,
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Note that in terms of the correlation coefficient, p;;,

Cij = pij\/Ciiij~ (18)
This implies
1

(032 = 55 [ +2300 | (19)
%,J
whence

Noting that p% = 1 by definition, and that pij < 1 for i # j is required for C to
be positive semi-definite, we have

N <> pl <N (21)
4,J

The lower bound is for totally independent X; while the upper bound occurs
when all the X; are perfectly degenerate. This means

% < Var[xz] < 2. (22)

In particular, for N quite large but with strongly correlated X; (or anticor-
related, since this is independent of the sign of p;;), there can be a large spread
in x2 values despite modeling the means and variances correctly compared to
what is expected in the independent case.



