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1 Introduction

The purpose of this document is to explore the first two moments of reduced χ2

statistics of Gaussian random variables, with inverse variance and inverse co-
variance weighting. There are two main results, which are not novel to humanity
but I reckon are useful to be looked at in tandem.

1. When correlations are present and inverse-covariance weighting is chosen,
the expected value is 1 and the variance is 2/N . Since we derive this
with an arbitrary covariance matrix, it also holds for the uncorrelated,
inverse-variance weighted case.

2. When correlations are present but inverse variance weighting is chosen,
the expected value of the statistic is still 1, but the variance is larger than
2/N . This means failing to account for correlations and choosing inverse-
variance weighting can produce χ2 values that appear in some instances
highly anomalous but in actual fact have relatively low significance when
the data is modeled correctly.

2 Definitions

Suppose {Xi : i = 1 . . . N} are jointly Gaussian random variables with1 ⟨Xi⟩ = 0
and ⟨XiXj⟩ = Cij (consider these as matrix elements of a matrix, C). I define
two statistics: inverse-covariance weighted reduced χ2,

χ2
c ≡ 1

N

∑
i,j

XiXj(C
−1)ij , (1)

and inverse-variance weighted reduced χ2,

χ2
v ≡ 1

N

∑
i

X2
i

Cii
, (2)

1This is just a convenient choice essentially reflecting the assumption that you’ve modeled
the means of your variables correctly. Exploration of incorrect mean modeling is left as future
work.
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3 Result 1

First I show that ⟨χ2
c⟩ = 1.

⟨χ2
c⟩ =

1

N

∑
i,j

(C−1)ij⟨XiXj⟩ (3)

=
1

N

∑
i,j

(C−1)ijCij (4)

=
1

N
tr(C−1C) (5)

=
1

N
tr(I) (6)

= 1. (7)

Here tr(·) denotes the trace, and I is the identity matrix of dimension equal to
N . I’ve used the fact that C is symmetric and

tr(AB) =
∑
i,j

AijB
T
ij . (8)

Now I compute Var[χ2
c ] = ⟨

(
χ2
c

)2⟩ − ⟨χ2
c⟩2. First,

⟨
(
χ2
c

)2⟩ = 1

N2

∑
i,j,k,l

(C−1)ij(C
−1)kl⟨XiXjXkXl⟩. (9)

Assuming Gaussianity, we can relate the four-point correlation function of a
Gaussian to its two-point function by Isserlis’ theorem,

⟨XiXjXkXl⟩ = CijCkl + CikCjl + CilCjk. (10)

If we plug Equation 10 into Equation 9, we get

⟨
(
χ2
c

)2⟩ = 1

N2

(
tr
(
C−1C

)2
+ 2tr

(
C−1CC−1C

))
(11)

=
1

N2
(N2 + 2N) (12)

= 1 +
2

N
(13)

Using what we derived above, namely that ⟨χ2
c⟩ = 1, we have

Var[χ2
c ] = ⟨

(
χ2
c

)2⟩ − ⟨χ2
c⟩2 =

2

N
. (14)

4 Result 2

It is easy to show that ⟨χ2
v⟩ = 1:

⟨χ2
v⟩ =

1

N

∑
i

⟨X2
i ⟩

Cii
=

1

N

∑
i

Cii

Cii
=

1

N

∑
i

1 = 1. (15)
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For the variance, again using Isserlis’ theorem,

⟨(χ2
v)

2⟩ = 1

N2

∑
i,j

⟨X2
i X

2
j ⟩

CiiCjj
(16)

=
1

N2

∑
i,j

CiiCjj + 2(Cij)
2

CiiCjj
. (17)

Note that in terms of the correlation coefficient, ρij ,

Cij = ρij
√
CiiCjj . (18)

This implies

⟨(χ2
v)

2⟩ = 1

N2

N2 + 2
∑
i,j

ρ2ij

 , (19)

whence

Var[χ2
v] =

2

N2

∑
i,j

ρ2ij . (20)

Noting that ρ2ii = 1 by definition, and that ρ2ij ≤ 1 for i ̸= j is required for C to
be positive semi-definite, we have

N ≤
∑
i,j

ρ2ij ≤ N2. (21)

The lower bound is for totally independent Xi while the upper bound occurs
when all the Xi are perfectly degenerate. This means

2

N
≤ Var[χ2

v] ≤ 2. (22)

In particular, for N quite large but with strongly correlated Xi (or anticor-
related, since this is independent of the sign of ρij), there can be a large spread
in χ2

v values despite modeling the means and variances correctly compared to
what is expected in the independent case.
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