
HERA Team Memo: H6C Internal Data Release 2.2

Joshua S. Dillon, Steven G. Murray, and the HERA Analysis Team

October 2, 2023

1 Executive Summary

In this memo, we explain the updates in data analysis from H6C IDR 2.1, documented in Dillon and Murray
(2023), to H6C IDR 2.2. The underlying data set is the same. This is a relatively minor revision and most
of what was written there remains true, including the location of most data products on lustre. As such,
this memo is not an exhaustive description of the IDR and relies on that memo for context. The biggest
changes are an additional round of RFI identification (with a new algorithm) and a change to how inpainted
data products are produced and LST-binned.

2 Per-Night Analysis

In this section, we detail all the changes since H6C IDR 2.1 to per-night analysis—i.e. everything before
LST-binning.

2.1 Pipeline Updates

As before, the pipeline is defined by a single TOML file, which interfaces with shell scripts that run the various
analysis steps using hera opm and makeflow. The new pipeline (see Figure 1) is restructured to accommodate
a second round of RFI-flagging, as we discuss in subsection 2.3.

2.2 Updates to Per-File Calibration

During redundant calibration, antennas with high-χ2 per antenna are removed iteratively, stopping only
after all such antennas are flagged. Previously this was done by imposing an absolute limit on the median
value of χ2 over the band. Now, we are doing this using the mean of over unflagged channels. This will
hopefully expose and flag antennas that are particularly bad over certain sub-bands and would have been
useful to catching the error mode where data packets were mislabeled for certain X-engines in either the
even or odd data (a failure mode we flag on separately).

2.3 RFI Flagging on Redundantly-Averaged, Delay-Filtered Cross-Correlations

The most important update in this IDR is an additional RFI flagging step. Previously, RFI excision was
performed in two steps using only autocorrelations, as explained in Dillon and Murray (2023). The first was
done per-file: autocorrelations for antennas passing basic checks were filtered using DPSS (Ewall-Wice et al.,
2021) modes out to 300 ns. The residual is then turned into a z-score by dividing by the expected noise on
that array-averaged autocorrelation. Outliers greater than 6σ are flagged.

The second step happens on all autocorrelations at once. Using those flags as a starting point, we develop
a 2D DPSS model on 5MHz and 450 s scales of the average autocorrelation of the best-behaved antennas.
This second step is specifically designed to catch broadband RFI that is particularly hard to catch on a
per-file basis. It also has the ability to remove prior flags, since it uses the prior flags as weights for DPSS
fitting but ultimately develops its own z-score to cut on—both for individual waterfall pixels as well as whole
times and frequencies.

1

https://github.com/HERA-Team/hera_pipelines/blob/main/pipelines/h6c/analysis/h6c_analysis.toml
https://github.com/HERA-Team/hera_pipelines/tree/main/pipelines/h6c/analysis/task_scripts
https://github.com/HERA-Team/hera_opm
http://ccl.cse.nd.edu/software/makeflow/
Danny Jacobs
HERA Memo #125
Recieved Oct 2 2023



H6C Nightly Analysis
Josh Dillon, 8/8/23

Extract Autocorrelations:
extract_autos.py

Raw 2-pol Autocorrelations
zen.{JD}.sum.autos.uvh5
zen.{JD}.diff.autos.uvh5

4-pol Raw Sum and Diff Data
zen.{JD}.{sum/diff}.uvh5

Raw Visibility 
Data Product

Data with 
External Origin

hera_cal process

Calibration Data 
Product

hera_qm / SINSS 
process

Metrics Data 
Product

Legend

Jupyter
Notebook

Not Yet 
Implemented

Antenna Metrics
zen.{JD}.sum.ant_metrics.hdf5

Antenna Classifications
zen.{JD}.sum.ant_class.csv

Redundantly and Absolutely 
Calibrated Gain Solutions 

(With Preliminary RFI Flags)
zen.{JD}.sum.omni.calfits

SSM Visibility 
Simulation

Per-File Antenna Flags
zen.{JD}.sum.antenna_flags.h5

Per-File RFI Flag Waterfall
zen.{JD}.sum.flag_waterfall.h5

All filesAll files
All filesAll files

All files
All files

All files

Smoothed Gains with Round 1 
RFI Flags and Final Antenna 
zen.{JD}.sum.smooth.calfits

Smooth-Calibrated, Redundantly-
Averaged, Delay-Filtered Visibilities

zen.{JD}.sum.smooth_calibrated.
red_avg.dly_filt.uvh5

Smooth-Calibrated, Redundantly-
Averaged, Incoherently-Averaged 

Magnitude Waterfalls
zen.{JD}.sum.smooth_calibrated.
avg_abs_{all/auto/cross}.uvh5

A Posteriori Ant/Freq/Time Flags
{JD}_aposteriori_flags.yaml

A Priori Flags
(Optional)

{JD}_apriori_flags.yaml

Antenna 
Classification 

Summary 
Notebook

(one per night)
Full Day 
Antenna 
Flagging 

Notebook
(one per night)

Full-Day 
Systematics 

Inspect 
Notebook

(one per night)

File Post-
Processing 
Notebook

(one per file)

Calibration 
Smoothing 
Notebook

(one per night)

Full Day RFI 
Notebook

(one per night)

File Calibration 
Notebook

(one per file)

Abs-Calibrated, Redundantly-
Averaged, Delay-Filtered Visibilities

zen.{JD}.sum.abs_calibrated.
red_avg.dly_filt.uvh5

Smooth-Calibrated, Redundantly-
Averaged, Inpainted Visibilities
zen.{JD}.sum.smooth_calibrated.

red_avg.inpaint.uvh5

Abs-Calibrated, Redundantly-
Averaged, Inpainted Visibilities
zen.{JD}.sum.smooth_calibrated.

red_avg.inpaint.uvh5

Delay-Filtered 
Average z-Score 

Notebook
(one per file)

Second Round 
Full Day RFI 
Notebook

(one per night)

Per-File Delay-Filtered, 
Redundantly Averaged z-Score
zen.{JD}.sum.red_avg_zscore.h5

Smoothed Gains with Final 
Antenna and RFI Flags

(Updated From Previous)
zen.{JD}.sum.smooth.calfits

Round 2 Per-File RFI Flag Waterfall
zen.{JD}.sum.flag_waterfall_round_2.h5

All files

Per-File Record of Data Inpainting
zen.{JD}.where_inpainted.h5

All files

Figure 1: The update pipeline for H6C IDR 2.2. Just like in IDR 2.1 (Dillon and Murray, 2023), the per-
day analysis is centered on a series of notebooks, either one per file or just one per night, each of which
both performs an analysis task and visualizes representative results in plots and tables. These notebooks
are all saved as .html files with embedded images, serving as rich logs of the processing. All the per-
night notebooks, as well the per-file notebook corresponding to the middle file of each night, are available
at https://data.nrao.edu/hera/Notebooks/H6C_IDR2/. The a priori flags come from the “scouting”
discussed in Murray and Dillon (2023a). The Delay-Filtered Average z-Score and Second Round Full Day
RFI Flagging notebooks are new in H6C IDR 2.2.

This IDR adds a new RFI flagging routine spiritually similar to the first two. It begins with data with
smooth cal applied (and thus all previous antenna and RFI flags). On a per-file basis, this data is coherently

2

https://data.nrao.edu/hera/Notebooks/H6C_IDR2/


Figure 2: Here we show the z-score metric used in an additional round of RFI flagging, the biggest change in
this IDR from H6C IDR 2.1. Specifically, we show the larger of the two polarizations’ z-scores for each pixel.
By redundantly-averaging, delay-filtering, and then incoherently averaging across baseline groups, we can
get a very sensitive metric of residual structure in frequency-space. It highlights a wide variety of RFI types.
Most of it is narrowband, especially digital audio above ∼180 MHz, though there also some quite “speckled”
RFI. We also see some of what looks like overflow from ORBCOMM satellite passes. Interestingly, the low
band (below FM) is pretty clean. The negative z-scores near prior flags comes from the fact that the DPSS
filter overfits noise near prior flags, since it is entirely unconstrained in flagged regions.

averaged within each redundant-baseline group. We next remove redundantly-averaged groups with lengths
greater than 150m (500 ns light travel time) and groups whose number of unflagged baselines is less than
5% of the most-redundant group. The remainder are DPSS filtered at 500 ns. The absolute values of the
residuals are inverse-variance-weighted-averaged (i.e. inverse Nsamples weighted) across baselines. This result
is Rayleigh distributed, so we can turn it into a z-score by subtracting the expected mean and dividing by
the expected noise. We also account for the fact that a 500 ns filter removes a significant fraction of the
noise, so we multiply the predicted variance by the fraction of DPSS modes excluded from the filter. In
delay filtered average zscore this is all done for each polarization individually and then saved as a waterfall
metric-type UVFlag file.

Next, in full day rfi round 2 we bring together all those UVFlag files. Since this z-score tends not to peak
at 0 (the underlying data are not Gaussian), we subtract a single constant from each polarization’s waterfall
to set the median value to 0. The result for 2459876 is shown in Figure 2. Using this waterfall, we identify
pixels to flag with z-scores, as well as whole times and frequencies to flag. The algorithm is very similar to
that used in the older full day rfi notebooks: first we flag 5σ outliers, then 4σ outliers that neighbor current
flags, then any channel or time that averages a z-score greater than 1. This is done on each polarization
independently, and then the final flags are OR’ed together. Finally, we flag any channels that are more than
25% flagged and any times that are more than 10% flagged.

3

https://data.nrao.edu/hera/Notebooks/H6C_IDR2/delay_filtered_average_zscore/
https://data.nrao.edu/hera/Notebooks/H6C_IDR2/full_day_rfi_round_2/
https://data.nrao.edu/hera/Notebooks/H6C_IDR2/full_day_rfi/


2.4 Updates to Inpainting

In H6C IDR 2.1, we produced redundantly-averaged inpainted and delay-filtered data products for every
file. This filtering was done at the horizon delay or 150 ns, whichever was larger. In this IDR, we are
now separately performing delay filtering (still with a minimum delay of 150 ns) and inpainting, now with
a minimum delay of 500 ns, which was picked to allow inpainting of systematics like mutual coupling and
cross-talk.

Expanding the range of delays inpainted, combined with an the additional flags described in subsec-
tion 2.3, led to another challenge: large flag gaps are difficult to inpaint over. They often result in “pop-ups”
where over-fitting noise at the edges creates very large amplitude inpainting results in the gap. We ad-
dressed this concern in two ways. First, we imposed a maximum gap size of twice the frequency scale set by
the inverse of the inpainting delay. For most baselines, that delay is 500 ns, so that maximum inpaintable
gap size 32 channels, just under 4MHz. For redundantly-averaged baselines groups with gaps larger than
that, the entire affected sub-band (either above or below FM, or both) is flagged. This happens relatively
rarely, except on 2459866, which had a couple of very bright, rather wide RFI events around 190MHz. This
additional flagging is not applied to the delay-filtered data products.

Second, we added a Tikhonov regularization (also known as ridge regression) to the least-squares fitting
of DPSS modes that penalizes large amplitude coefficients. By adding 10−3I to the diagonal of DPSS fitting
matrix (which was already normalized to be all 1s on the diagonal). This prevents “pop-ups” and thus
minimizes the impact of large channel gaps in inpainted data. However, that ad hoc parameter choice,
combined with the fact that the data are very poorly constrained in the widest gaps, leaves us in a position
where the inpainted data may be worse than just not including that day in the LST-average. At some point,
perhaps it is wiser to accept some discontinuity in the sampling from day to day? This remains a major
open question if we want to move forward with inpainting. Perhaps constrained realizations, motivated by
the statistics of real data, may be a better approach?

Separately, we have condensed the outputs of the inpainted with the redundantly-averaged file that was
neither inpainted nor flagged. This inpainted output file retains flags where inpainting was performed, but
we separately output a UVFlag describing where inpainting was performed, as we describe in section 4.

3 LST-Binning

Before summarizing the updates to LST-binning, we note that the full python environment specifications
in which the LST-binning data products were produced can be found in /lustre/aoc/projects/hera/

h6c-analysis/IDR2/lstbin-outputs/<CASE>/environment.yaml. Some of the more important package
versions are: pyuvdata==2.4.0, hera-calibration==3.4.0, hera qm==2.1.2.

3.1 Improved Accounting of Inpainted Data

This release contains some updates to LST-binning, most importantly related to properly propagating statis-
tics for inpainted data. Previously, every datum was considered to be in one of two states: flagged or un-
flagged, i.e. fi ∈ {0, 1}. Letting Vi be either a redundantly-averaged visibility or an individual visibility,
and letting ni be the number of visibility samples in that visibility (i.e. ni ≥ 1 for the redundantly-averaged
case, and ni = 1 for the non-averaged case)1, the LST-binned visibility was computed as

V̄ =

∑
i Vinifi∑
i nifi

, (1)

which is a minimum-variance statistic if we assume that the intrinsic variance of each (non-redundantly-
averaged) visibility is constant over all nights i. In this case, the variance of the LST-binned visibility is
estimated as

S2 =

∑
i(Vi − V̄ )2nifi∑

i nifi
. (2)

1Note that ni is never zero for either case, which follows from the constraint that n is uniform over frequency. In practice,
baseline-pol-times that are fully flagged before redundant averaging can just be treated as if they do not exist. If all baselines
in a group are fully flagged before averaging, that group is treated as if it does not exist in the final product

4



These equations are presented in Murray and Dillon, 2023b, along with a distribution for the excess variance,
γ = S2/⟨S2⟩. Notice, however, that while ni is constrained to be spectrally uniform, fi is not. This can result
in spectral structure in the LST-binned visibility. In IDR2.2, for redundantly-averaged visibilities, we enable
an ‘inpaint-mode’, in which (most of) the flagged visibilities are replaced by inpainted smoothly-modeled
visibilities. Let pi ∈ {0, 1} represent the ‘inpainted state’ of the visibility, i.e. pi = 0 if the visibility is not
inpainted and 1 if it is. Note that by definition all inpainted data has fi = 0. In IDR2.2, we have a single
per-night file (with extension .inpaint.uvh5, cf. section 4) that contains the measured data where fi = 1
and the inpainted data where fi = 0. In this file the flag array represents this fi. Thus, we can compute
the traditional LST-binned average (as in IDR2.1, and presented above) using just this file – the inpainted
data are ignored as they are flagged anyway. However, we also use a supplemental UVFlag file (again, cf.
section 4) specifying pi. If these files are provided to the LST-binner, it can use the new statistics:

V̄inpt =

∑
i Vini(fi + pi)∑
i ni(fi + pi)

, (3)

and

S2
inpt =

∑
i(Vi − V̄ )2ni(fi + pi)∑

i ni(fi + pi)
. (4)

However, note that the expectation of S2 (again, under the assumption of uniform intrinsic variance per-
visibility) is

⟨S2
inpt⟩ = σ2 (

∑
i fi)− 1∑
i nifi

, (5)

which is equivalent to the expected variance of the non-inpainted data alone. Thus, we propagate an
Nsamples =

∑
i nifi, not

∑
i ni(fi + pi).

In practice the LST-binner can output both flagged-mode and inpainted-mode visibilities in a single run
(requiring only one read of the data). These LST-binner updates were implemented in hera-cal PRs 907
and 912.

3.2 Other LST-Binning Updates

Another addition to the LST-binner is that it now has the capability to write out the median (and MAD)
of the LST-bin (in addition to the mean and standard deviation). This could be useful for investigating the
effects of one-shot sigma-clipping in future analyses.

Finally, the LST-binner now attempts to automatically choose the best LST branch-cut for writing out
files. To do this, it sorts the non-empty LST-bins, and finds the largest gap, and uses the LST just after
this gap as the branch cut. This LST becomes the lowest used in output filenames, such that lower LSTs
are wrapped around 2π to become higher. Also, the JD’s used in the UVData files to represent each LST bin
start at this branch cut.

4 Summary of New, Modified, or Removed Data Products

4.1 Per-Night Data Products

Due to the changes in the pipeline, the following output files were added:

• zen.24598??.?????.sum.flag_waterfall_round_2.h5: This contains the flags waterfall generated
from RFI flagging on redundantly-averaged, delay-filtered, incoherently averaged data. It will also
contain all previous flags.

• zen.24598??.?????.where_inpainted.h5: This baseline-type UVFlag file says which times and fre-
quencies inpainting was performed for in the redundantly-averaged files. This file enables us to use the
red avg.inpaint.uvh5 files for LST-binning both with and without inpainting.

The following output files have had their meaning changed:

5

https://github.com/HERA-Team/hera_cal/pull/907
https://github.com/HERA-Team/hera_cal/pull/912


• zen.24598??.?????.sum.smooth.calfits: This file gets updated in place with the round 2 flag
waterfall.

• zen.24598??.?????.sum.smooth_calibrated.red_avg.inpaint.uvh5: This file has has inpainted
data replacing flagged channels wherever the where_inpainted.h5 indicates (generally everywhere
except FM or completely flagged integrations/baselines). Those channels remain flagged. Nsamples

contains the number of baselines in each redundant group and will be spectrally constant.

• zen.24598??.?????.sum.abs_calibrated.red_avg.inpaint.uvh5: Same as above.

The following output files were removed:

• zen.24598??.?????.sum.smooth_calibrated.red_avg.uvh5

• zen.24598??.?????.sum.abs_calibrated.red_avg.uvh5

4.2 LST-Binned Data Products

Recall that all data products are available in /lustre/aoc/projects/hera/h6c-analysis/IDR2/lstbin-outputs/
<CASE>/. The following CASEs have been removed:

• redavg-smoothcal-sigclip: it is not clear how to apply sigma-clipping in a way that doesn’t jeop-
ardize spectral smoothness, so we have removed this case for this IDR.

The following CASEs have been moved:

• redavg-smoothcal → redavg-smoothcal/flagged: this represents the case in which flagged data is
not inpainted.

• redavg-smoothcal-inpaint → redavg-smoothcal/inpaint: the case in which inpainted data is
included in the average (but not Nsamples, cf. §3)

• redavg-abscal → redavg-abscal/flagged: this represents the case in which flagged data is not
inpainted.

• redavg-abs-inpaint → redavg-abscal/inpaint: the case in which inpainted data is included in the
average (but not Nsamples, cf. §3)

In each redundantly-averaged CASE directory, the following new files have been added:

• zen.MED.<LSTRADIAN>.sum.uvh5 – standard UVH5 file containing the median of LST-bins for the two
LST-bins starting at LSTRADIAN. Not added for case nonavg (due to data volume considerations).

• zen.MAD.<LSTRADIAN>.sum.uvh5 – standard UVH5 file containing the median-absolute-deviation of
LST-bins for the two LST-bins starting at LSTRADIAN. Not added for case nonavg (due to data volume
considerations).

References

Dillon, J. S. and S. Murray (2023). “HERAMemo #124: H6C Internal Data Release 2.1”. reionization.org/memos.
Ewall-Wice, Aaron, Nicholas Kern, Joshua S. Dillon, et al. (Jan. 2021). “DAYENU: a simple filter of smooth

foregrounds for intensity mapping power spectra”. In: MNRAS 500.4, pp. 5195–5213. doi: 10.1093/
mnras/staa3293. arXiv: 2004.11397 [astro-ph.CO].

Murray, S. and J. S. Dillon (2023a). “HERA Memo #122: H6C Season A Priori Flag Summary”. reioniza-
tion.org/memos.

— (2023b). “HERA Memo #123: LST-Binning Statistics”. reionization.org/memos.

6

https://doi.org/10.1093/mnras/staa3293
https://doi.org/10.1093/mnras/staa3293
https://arxiv.org/abs/2004.11397

	Executive Summary
	Per-Night Analysis
	Pipeline Updates
	Updates to Per-File Calibration
	RFI Flagging on Redundantly-Averaged, Delay-Filtered Cross-Correlations
	Updates to Inpainting

	LST-Binning
	Improved Accounting of Inpainted Data
	Other LST-Binning Updates

	Summary of New, Modified, or Removed Data Products
	Per-Night Data Products
	LST-Binned Data Products


