
HERA Team Memo: H6C Internal Data Release 2.1

Joshua S. Dillon, Steven G. Murray, Zachary E. Martinot, and the HERA Analysis Team

August 30, 2023

1 Executive Summary

In this memo, we lay out the first release of data products from a significant subset (14 nights) of the 6th
season of HERA observing. We explain the available data products, where to find them, how they were
made, and how the analysis has changed since H1C and H4C—most notably the shift to notebook-based
processing and the overhaul of the LST-binner. The purpose of this IDR is to explore various analysis choices
and their impact on systematics as we narrow in on a final analysis and begin power spectrum estimation
and comparison to astrophysical theory.

2 Observing Epoch and Data Selection

This IDR includes 14 nights starting with 2459861 (October 8-9, 2022) and ending with 2459876 (October
23-24, 2022). These nights were picked because they were an early set of approximately two weeks of
continuous data taken with no major issues noted by observers—a similar length of time that went into H1C
IDR2 (Dillon, 2019), the data set underlying the first hera limits (Abdurashidova et al., 2022a) and their
interpretation (Abdurashidova et al., 2022b).

2459865 and 2459875 were excluded due to large quantities of broadband RFI (Murray and Dillon, 2023a),
currently believed to be attributable to lightning (Heligenstein and Jacos, 2023). Frequent, bright broadband
RFI is basically impossible to detect in our per-file RFI flagging and difficult to detect in our full-day RFI
flagger, especially low-level broadband RFI between brighter events. When the density of RFI gets bad
enough, the choice was made to flag the whole night. Additionally, bright RFI events (likely lightning
storms) that persist for only a modest fraction of the night resulted in partial-night flags. These include:

• 2459863.2525197007 – 2459863.3724208707

• 2459869.2528783116 – 2459869.3774771024

• 2459869.6649267366 – 2459869.6694006610

• 2459872.2527171504 – 2459872.2930104310

• 2459876.2527275416 – 2459876.2624583268

• 2459876.6598546500 – 2459876.6692498910

Finally, small quantities of data we flagged because the sun was above the horizon (generally at the end of
the night).

All these JD-based flags were developed by looking at just autocorrelations as part of a “data-scouting”
exercise using the full_day_auto_checker notebook, with which we produced one “a priori” flag YAML
file per night. The evaluated notebooks are available at NRAO and final a priori YAMLs are also in
hera pipelines. The full season has roughly 1,300 hours over 147 nights currently believed to be good
quality data. For more details, see Murray and Dillon (2023a).

The LST-coverage of this dataset, after all of that flagging and the per-night RFI flagging discussed in
subsection 3.4 below, is shown in Figure 1.
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Figure 1: Number of nights observing each LST bin, after flagging. More time is flagged earlier in the IDR
in part because lightning was more common during the first part of the night than later into the night.

3 Per-Night Analysis

The goal of nightly analysis is to prepare the data for LST-binning by performing calibration and flag-
ging. Calibration includes redundant-baseline calibration (Dillon et al., 2020), fixing of the degeneracies of
redundant-baseline calibration (Dillon et al., 2018) with absolute (sky-based) calibration (Kern et al., 2020),
and calibration smoothing. Flagging includes both the generation of a single RFI flagging mask applied to
all baselines, as well as flagging of whole antennas over either the whole night or part of the night.

The pipeline also produces a number of post-processed data products, which incorporate all of the
flagging and calibration mentioned above. These include averaging over redundant groups and delay-filtering.
These allow for the LST-binning of data products with favorable properties, like file size or foreground
contamination.

3.1 Pipeline

As in previous IDRs, the pipeline is defined by a single TOML file, which interfaces with shell scripts that
run the various analysis steps using hera opm and makeflow. Unlike in previous seasons, the processing
has largely replaced python scripts with Jupyter Notebooks. These are either run one-per-file (most nights
have 1,862 sum files, each with two integrations) or one per-night, where the per-night processing steps
tend to be the bottleneck. These notebooks—all of which are available as unprocessed “templates“ in
hera notebook templates—are meant to both be a clear, well-annotated presentation of the analysis steps
performed accompanying a set of representative plots and tables that might allow the analyst to quickly
identify issues in the analysis before performing LST-binning. In Figure 2 we show the pipeline with the
input and output data products and the notebooks that perform the processing. In the rest of this section,
we explain the various processing steps, focusing on what is new for this season.

The biggest single change is the introduction of the file calibration notebook, which is an attempt
to carry a single file as far as possible without reference to external information or other times. It therefore
includes antenna flagging, RFI-flagging, and both redundant-baseline and absolute calibration. It is not the
final word on flagging or calibration—later steps allow information from other times to impact the results.

3.2 Antenna Flagging

Antenna flagging has been largely overhauled, most antenna flagging takes place on a per-file basis in the
file calibration notebook. Unlike in previous seasons, antennas can be flagged per-polarization and
per-file. Antenna flagging always includes both times and all frequencies in the file. In the context of
the file calibration notebook, an antenna is labeled good, bad, or suspect on a number of criteria. Bad
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Figure 2: The per-day analysis is centered on a series of notebooks, either one per file or just one per
night, each of which both performs an analysis task and visualizes representative results in plots and tables.
These notebooks are all saved as .html files with embedded images, serving as rich logs of the processing.
All the per-night notebooks, as well the per-file notebook corresponding to the middle file of each night,
are available at https://data.nrao.edu/hera/Notebooks/H6C_IDR2/. The a priori flags come from the
“scouting” discussed in Murray and Dillon (2023a).

antennas for any reason are bad and flagged. Suspect antennas for any reason are suspect, but not necessarily
flagged. Antenna classification and the reasons behind it are reported in Table 1 of the file calibration

notebook.
Antennas can be flagged for any of the following reasons:

• Dead: Antennas with visibilities that are more than half zeros are considered dead. This is a binary
classification; the rest can be good, bad, or suspect.

• Low-correlation: Antennas with low correlation coefficients are flagged—usually because of clock
distribution issues that affect whole nodes (Storer et al., 2022).

• Cross-polarized: Antennas with larger visibility amplitudes when correlated with putatively opposite-
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polarized antennas are likely cross-polarized (Storer et al., 2022) and are thus flagged.

• Excess even/odd zeros: While the visibility data products from the correlator are sums and diffs,
these can be rearranged into even and odd samples. An excess of zeros in either the evens or the
odds is generally a sign of packet loss. While this happens on a per-baseline basis, we have generally
found that packet loss tends to affect a few antennas disproportionately because of the ordering of
visibility information. So we pick the smallest number of antennas to flag for a given file that then
flags all visibilities with signs of packet loss. This overflagging has the benefit of allowing us to carry
per-antenna flags with calibration solutions—something we could not do with per-visibility flags.

• High or low autocorrelation power: Autocorrelations with median autocorrelations that are too
high or too low are flagged.

• Excess RFI in autocorrelations: Each autocorrelation is DPSS-filtered (Ewall-Wice et al., 2021)
and then divided by the expected noise on an autocorrelation to form a z-score. This allows for
detection of channels with RFI or other non-smooth structure. Channels flagged on more than half
of antennas are considered “consensus flags.” Antennas are flagged if their autocorrelations have too
many anomalous channels that are not among the “consensus flags.” These appear to have some sort
of internal RFI, a comb of small spikes, large reflections, or similar, though the exact nature of the
problems caught by this check are not fully understood.

• Anomalous autocorrelation slope: After a linear fit to median-filtered autocorrelations (to remove
RFI), antennas with autocorrelations that tilt too far from flatness in either direction are flagged.

• Anomalous autocorrelation shape: After performing the above checks, antennas with autocorre-
lations too dissimilar to the average (previously) unflagged antenna are themselves flagged. This check
is done after applying a consistent set of RFI flags and dividing out by a single overall normalization
per antenna.

• Excess per-X-engine power in diff visibilities: After performing the above checks, we next see
whether the diff visibilities are consistent with noise predicted by the autocorrelations. This catches
issues due to stale or otherwise mis-written packets, which had previously led to autos getting written
in either the even or odd subset of the visibility, but not the other. We suspect that wrong crosses
were also leaking into crosses. We do this check by X-engine group (i.e. every 96 channels), since
that’s the observed failure mode, looking for 10σ outliers. Just as with the excess even/odd zeros,
this per-baseline failure is attributed to the smallest number of individual antennas that explain all
such issues. We have noticed that this check also sometimes catches broadband RFI (e.g. lightning),
perhaps because it creates temporal discontinuities in the actual signal on the even/odd timescale.

• High redcal χ2 per antenna: Antennas with high χ2 per antenna are flagged iteratively; after
identifying bad antennas, a further round of redundant calibration is performed until no more an-
tennas are flagged. This can find issues like index-swapped antennas, open dish doors, and feed
position/orientation issues.

• Outrigger antennas are all flagged for ease of calibration and for reducing the size of redundantly-
averaged visibility files.

While all this per-file antenna flagging enabled us to carry raw data all the way though basic calibration
and RFI flagging, it resulted in often-inconsistent antenna-flagging where an antenna would be flagged for
much but not all of the night, sometimes going in and out repeatedly. Since much of systematics rejection
depends on temporal smoothness, we decided to apply an addition round of antenna flagging harmonization.
This was performed in one notebook, full day antenna flagging, which ran after calibration but before
calibration smoothing.

Without going into too much specifics, the basic idea of this notebook is to harmonize flags by looking
for periods of time when various metrics which produce the above flags consistently exceed the thresholds
for being identified as “bad.” No more than 30 files (60 integrations) are allowed to be flagged in a row,
otherwise, the whole night before or after those files would also be flagged (since large flag gaps cause
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Figure 3: Antenna flagging fractions over the IDR, where the red area is proportional to fraction of total
observing time flagged (excluding times when the whole array was flagged). The top-left semicircles indicate
north-polarized antennas, the bottom right semicircles indicates east-polarized antennas.

problems with smoothing and fringe-rate filtering). Finally, antennas flagged for more than half the night
(or more than a quarter of the night for certain specific metrics) were also simply flagged for the whole night.
In Figure 3, we summarize the antenna flag fractions over the whole season.

3.3 Calibration

The basic structure of our calibration algorithm is very similar to what was done for H1C and H4C.
Redundant-baseline calibration is performed as in H1C (Dillon et al., 2020) and H4C. The degeneracies
of redcal are then calibrated using a simulated visibility model. Like in H4C, the visibility model is com-
puted with the RIMEz visibility simulation code, but in H6C the sky model used is Zac Martinot’s Southern
Sky Model (Martinot, 2022) which blends the GLEAM point-source catalog with a diffuse component. By
contrast, in H4C the sky model used consisted of only the GLEAM sources plus a set of very bright sources
that are not included in the GLEAM catalog (Dillon and Martinot, 2020), while H1C was calibrated against
calibrated data; see Kern et al. 2020. Finally, these per-time-per-frequency calibration solutions are smoothed
in both time and frequency using least-squares fits to a basis of DPSS functions (as opposed to H1C, which
used CLEAN).

Redundant-baseline calibration is only modestly changed. We have eliminated logcal, instead solving
for starting visibilities for omnical with averaged visibilities calibrated with firstcal. After some experi-
mentation, we have dramatically reduced the number of omnical iterations to a minimum of 100. Each time
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antennas are thrown out for high χ2, an extra 50 iterations are run. Our experiments indicate that this does
not change the gain solutions appreciably compared to the noise and has sub-percent-level effects on χ2.

Absolute calibration has been more substantially changed.
The process begins in the file calibration notebook with a very simple delay-slope calibration. The

delay calibration uses the omnical visibility solutions at the channels of known transmitters (with known
headings) to remove overall delay slopes—a subset of the phase slope degeneracy of redcal. This step is
no longer needed for absolute phase calibration with the new phase calibration algorithm (described below),
but has been left in place in the file calibration notebook since it is cheap to run and can still provide
a rough phase calibration if the visibility model is not available.

Next, we calibrate the overall gain amplitude spectrum using the model autocorrelations simulated with
RIMEz and the Southern Sky Model. This autocorrelation model includes a model of the receiver tempera-
ture spectrum adapted from Fagnoni et al. (2021) - the autocorrelation model is a cubic spline interpolation
of the five temperature values specified at the end of section III-A. Cross-correlation visibilities are no longer
used to perform absolute calibration of gain amplitudes, which means we no longer need to worry about the
“abscal bias” that resulted from low-SNR complex calibration (Aguirre et al., 2021).

Next, we use the amplitude and delay-slope calibrated omnical visibility solutions to calibrate out the
per-frequency generalized phase gradient across the array. The number of components of the generalized
phase gradient depends on the level of redundancy of the array. While full HERA has only two such degrees
of freedom, which correspond to EW and NS phase slopes, the split-core configuration can produce more
degrees of freedom if enough antennas are flagged or not included in one of the three sectors.

The algorithm for this phase calibration has been overhauled to produce much more accurate phase
solutions when model errors are π-radians or more on some visibilities. This level of error is generally present
even at the best-modeled LST’s (e.g. LST 2hr) and the old algorithm solved a linearized approximation
problem which was generally not valid in the presence of errors of that magnitude. The new technique solves
the non-linear least-squares problem exactly. Roughly, the new technique takes the product VdataV

∗
model, puts

it on a grid, FFTs, and finds the per-frequency generalized phase gradient corresponding to the maximum
of the real part of that quantity. This initial estimate is then refined with Newton’s method to fined the
exact maximum of the objective function. There are still occasional calibration failures at some LST’s
where the data and model are quite dissimilar, but the new method does substantially better than the old
TT phs logcal approach and reasonable calibration solutions can now be obtained for most LST’s where
the solutions were previously collapsing, necessitating smoothing over.

This new algorithm was implemented in this pull request as a new set of functions in hera cal.abscal:

abscal.complex phase abscal

abscal. put transformed array on integer grid

abscal. phase gradient solution

abscal. newton solve

abscal. grad and hess

abscal. eval Z

The entry point to the new algorithm within the file calibration notebook is the function complex phase abscal.
The results of redcal and abscal can be seen in the file calibration notebooks. These are created

per file in parallel and the middle one per day is hosted at that link. The rest sit on lustre with the other
data products.

Calibration smoothing was performed jointly in two dimensions with filter scales picked to fit time
evolution with 3 DPSS modes and frequency evolution with 51 DPSS modes. Unlike in H4C, no LSTs
were “blacklisted” (i.e. given 0 weight in the fit, but not necessarily flagged). The calibration smoothing

notebooks that performed the calculation are all available at that link. They also plot the results of smoothing
for a few representative antennas. One algorithmic change was the addition of the detection of phase flips
in the gains, which were exhibited by two antennas (121-East and 144-North) occasionally. These flips are
taken out before smoothing and then put back in after smoothing, just like an overall delay. Integrations
before and after phase flips were flagged since the flip could have happened in the middle of an integration.

6

https://github.com/HERA-Team/hera_cal/pull/876
https://data.nrao.edu/hera/Notebooks/H6C_IDR2/file_calibration/
https://data.nrao.edu/hera/Notebooks/H6C_IDR2/calibration_smoothing/


3.4 RFI Excision

RFI excision has been completely overhauled and quite simplified. The basic idea is to try to identify RFI
using array-averaged autocorrelations, which have very low noise and are thus very sensitive to RFI. This
happens in two stages.

In the first, which is part of the file calibration notebook, flagging is performed on a single spectrum
created from averaging over all non-flagged antennas’ autocorrelations and over both integrations in the file.
First the extreme outlier channels are flagged with a simple differencing method for identifying outliers. Next,
the autocorrelation spectrum is fit with DPSS (Ewall-Wice et al., 2021) modes out to 300 ns. The residual is
then turned into a z-score by dividing by the expected noise on that array-averaged autocorrelation. Outliers
greater than 6σ are flagged.

After all file calibration notebooks are complete but before calibration smoothing is performed,
we run a full day RFI excision notebook. The key idea of this notebook is to look for RFI using unsmoothness
in both time and frequency, which is particularly important for detecting broadband RFI like that created
by (we believe) lightning storms. This notebook, which runs once per day, takes the initial set of flags as a
starting point, but it is allowed to add or remove flags as appropriate.

The basic idea is as follows: using the starting set of flags, along with the range from 87.5–108MHz and
any times identified by the season scouting (Murray and Dillon, 2023a), antennas are individually filtered in
2D with DPSS on 5MHz and 450 s scales. Ignoring antennas with substantial residual structure (or the worst
75% of antennas, whichever is fewer), the autocorrelations are then averaged and filtered. Again, we turn
the filtered autocorrelations into a z-score by dividing by the expected noise. We add flags to 5σ outliers and
to 4σ outliers that neighbor other flags (iteratively, using the watershed algorithm). Next, we iteratively flag
whole times and/or channels whose average z-score is greater than 1.5σ. After this, any integration more
than 10% flagged and any channel more than 25% flagged is completely flagged.

With this “round 1” flagging mask created by expanding the initial flags, the averaged autocorrelation is
DPSS filtered again. After re-flagging any a priori flagged data, any 2σ outliers that were flagged in round
1 are flagged again. We now repeat the above procedure, starting with the 5σ outliers, the 4σ neighbors,
and the per-integration and per-channel thresholding. In this way, times and frequencies flagged by the
individual notebooks but not showing significant outliers from the 2D DPSS model are allowed to remain
unflagged. This might be because they were due to spectral structure on individual antennas not present in
all antennas, though this remains an open question. Likewise, there is an open question about using redcal

χ2 as another source for identifying low-level RFI and indeed some unflagged spikes in χ2 are apparent in
the calibration smoothing notebooks.

3.5 Post-Processing

In theory, one could be done at this point; you can take the calibration solutions and flags you want from
the above steps and proceed to LST-binning. However, there is one final step in the per-night data analysis
pipeline designed to reduce the data volume before LST-binning. This “post-processing” step is run for
all files in parallel. We also post the file postprocessing notebook posted from each night as a (hopefully)
representative sample, since it is not feasible to manually inspect thousands of such notebooks. It consists
of three main tasks.

The first is the coherent averaging of visibilities in redundant baseline groups. This is performed both for
visibilities with smoothed calibration solutions and for visibilities with all the same flags but no calibration
smoothing.1 The notebook also includes fitting of all redundantly-averaged baselines (with both smoothed
and not smoothed gains) using DPSS at the horizon delay or 150 ns, whichever is larger. This enables both
inpainting and delay-filtering. Finally, we produce waterfalls of incoherently baseline-averaged magnitudes
of autocorrelations, cross-correlations, and both, which may be useful for detecting transients like FRBs.

After post-processing is done, we perform a full-day look at systematics on a handful of redundantly-
averaged baselines using the full day systematics inspect notebook. This is examining full-day waterfalls in
frequency/time space, delay/time space, and delay/fringe-rate space before and after delay and fringe-rate
filtering, as well as coherent and incoherent averaging and after forming pseudo-Stokes I and Q. Though this

1Likely one of these two will be removed in future analyses, but at this point we are trying to explore multiple possible ways
forward.
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notebook does not examine all of the data, it is the deepest possible look at a subset of baselines on a single
day, enabling the quick detection of low-level systematics like the characteristic “X” in delay/fringe-rate due
to mutual coupling (Josaitis et al., 2022).

4 LST-Binning

The goal of LST-binning is to coherently average all the nights in the data together, within LST-aligned
bins. This takes the total data volume from Nnights×Nintg×Nbl×Nfreq×Npol down to NLST×Nbl×Nfreq×
Npol. The challenges associates with LST-binning include performance (especially I/O and Memory usage),
book-keeping (ensuring baselines/pols between nightly files are treated properly) and quality assurance (i.e.
ensuring that flagged or otherwise bad data doesn’t get averaged into the final product).

For H6C, the LST-binner was completely overhauled2 to improve performance and add some new features
to enable the averaging of redundantly-averaged visibilities. We outline the basic algorithm in the next
section, and highlight substantive changes following that.

4.1 Outline of LST-binning Procedure

The following attempts to summarize the new LST-binning procedure at a high-level:

1. Determine the LST grid in which to bin the observations. For H6C IDR2, this is a grid
starting with its first edge at zero hours, its last edge at 24 hours, and a bin size as closely matching
the raw integration time (∼9.6 s) as possible (while allowing for the exact match of the endpoints to 0
and 24).

2. Determine which input files correspond to which output LST bin files. We write out LST
bin files that include 2 LST bins each (and thus are similar in data volume to the input files). Before
running the LST-binner proper, we roughly configure which LST-bin file each input file corresponds
to. We do this based on the JD encoded in the filename of each input file, and use the knowledge that
(most) input files are regularly spaced in time. From this we obtain a conservative list of input files
matching an output LST file (i.e., it includes at least all the input files required for each output bin).
This configuration is run by hera opm and saved to a YAML file in the lstbin-output directory.

3. Run the LST-binner for each particular output file separately. hera opm creates individual
tasks for each LST file, which are run via SLURM in parallel. For each, we:

(a) Read all input metadata. We obtain the (conservative) list of matching input files for the two
bins in this output file from the YAML configuration reference above, and access only the parts
of their metadata that we require using the new FastUVH5Meta class in pyuvdata.

(b) Determine if this is redundantly-averaged input data. We do this by checking if all
baselines included in one of the input files are non-redundant.

(c) Collate all baselines across input files. We go through each input file, read which antenna-
pairs are included, and take a union of all of them. We do not consider whether they are fully
flagged. If we have redundantly averaged data, we ensure that a change of representative baseline
within the same group across different files is handled correctly. Note that since we do this collation
of baselines at the per-output-file level, different output files may include different baselines.

(d) Initialize output files. Now that we know the final size of the output data (baselines, polariza-
tions, frequencies and 2 LSTs), we initialize the output UVH5 file with metadata and allocated
space (on disk, not memory) for the LST-binned data. This is done for all output file kinds: the
LST-binned data, the STD file (measured night-to-night standard deviations), and potentially a
“GOLDEN” file, which has data shape (Nnights, Nbls, Nfreqs, Npols), and includes all the data for a
particular LST-bin. This is only written if the user requests a GOLDEN LST that falls within the
bins of the current output file. For H6C IDR2, we write one GOLDEN file for every LST-hour.

2Details of the changes in the code are in https://github.com/HERA-Team/hera_cal/pull/846.
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(e) Filter input files based on the LSTs in the output file. Since the YAML configuration is
potentially conservative, doing a rough calculation based on the filename of each input file, we
now do a more accurate input-file selection based on the metadata itself.

(f) Split the collated baselines into chunks with a size set by the user. Then for each each
chunk:

i. Read the data. Read the data (and Nsamples and flags) associated with any of the baselines
in the current chunk from all of the input files. We read these into contiguous arrays of shape
(Ntimes, Nbls, Nfreqs, Npols), where the times may be sourced from multiple nights.

ii. Calibrate. If calibration files are specified by the user, read them and calibrate the data.
This is impossible for redundantly-averaged data, which therefore already has calibration
applied before averaging.

iii. Rephase data to central LST grid. In order to alleviate decoherence when averaging
complex visibilities from across a full LST bin, we rephase the visibilities to the central LST
of each bin.

iv. LST-align. We assign each time in the data to its appropriate LST-bin.

v. Optionally Sigma-Clip. We optionally perform a single-iteration sigma-clip within each
LST-bin, where we obtain Z-Scores for each baseline and frequency (real and imaginary com-
ponents treated separately) based on the (unweighted) median-absolute-deviation (MAD).
There is an option to either flag data points with too few samples, or ignore sigma-clipping
for those points.

vi. LST-average. For each LST bin, we average the data within the bin. We use weighted
averages where the weights are ξNsamples for each observation (where ξ is an indicator function
for whether the data is flagged or not). These are typically binary for data that has not been
redundantly averaged, but can be more general for redundantly-averaged data.

vii. Find the standard deviation of the bin. Using the weighted mean, we also determine
the weighted sample standard deviation of the data (for both real and imaginary components
separately), representing the night-to-night variance of each baseline and frequency channel.

viii. Write the chunk to file. We write the data generate for this baseline chunk to the initialized
files, freeing up the memory for the next chunk.

Table 1 summarizes the options and parameters used in the LST-binning for the H6C IDR2 dataset.

4.2 Changes from H1C

Substantive changes to the algorithm are as follows:

1. The rough pre-matching of input files to output LST-bin files, and the saving of that configuration into
a YAML file, was introduced. This improves performance significantly, and also makes it easier to do
post-facto exploration of the LST-binning by reading in the configuration file. In terms of performance,
the reason this is much faster is that it can use the JD’s defined in the filenames of the input files to get
a rough match. Parsing filenames is significantly faster than creating an open HDF5 File object (not to
mention reading that file). The previous code was reading all files’ metadata at the configuration step,
taking about 40min for H6C IDR2, and then each task for each output LST bin file had to perform
the same match again, because that configuration was never saved. Now, the quick rough-match on
a single head node takes of order 1 minute, and the more accurate matching that happens for each
particular LST file is quick because it only has to read a small number of files.

2. Instead of looping over baselines and appending each LST-binned result to a growing list, we now read
a baseline ‘chunk’ from each constituent file, and perform LST-binning in a vectorized manner. This
improves both CPU performance (due to the vectorization and keeping data contiguous in memory),
and RAM usage.

3. We have added proper handling of redundantly-averaged input data, so that baseline groups are prop-
erly matched together (even if labeled by a different key for different files).
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Option Description Value
rephase Whether to rephase visibilities to the central LST of

each bin
True

golden lsts LSTs for which to output full data for later explo-
ration.

Every LST hour

save channels Channels to save full data over all LST bins 150, 750, 1250
only last file per night Whether to use only the last file on any given night

to determine the observed antenna pairs.
True

sigma clip thresh The number of sigma before clipping data (zero
means no clipping)

0, 4

sigma clip min N The number of data points required in an LST bin
to do sigma-clipping

4

flag below min N Whether to flag data with fewer than
sigma clip min N points, or just to ignore sigma-
clipping there.

False

flag thresh If the fraction of data in an LST bin (for a baseline-
channel) that is flagged is higher than this value,
flag the whole bin for that baseline-channel. Applied
before sigma-clipping.

0.8

Table 1: Table of functional options for the LST-binner (i.e. ignoring paths and performance parameters).
Sigma-clipping was in general turned off (i.e. threshold set to zero) but one run using a 4σ threshold was
performed.

4. We have added proper handling of non-uniform Nsamples in the LST-averaging and calculation of the
standard deviation across nights (to accommodate redundantly-averaged input data).

5. We now initialize each LST-bin output file at the beginning of the LST-binning process (just setting
up the metadata and data size on disk), then progressively write to that file for each baseline ‘chunk’
to be read. This enables the peak memory usage to be essentially set by the size of the baseline chunk
(which can be controlled) and number of nights, without accumulating RAM-usage over the course of
the averaging. Previously, RAM usage was difficult to predict and could exceed the available RAM at
any point of the program’s execution.

6. In addition to the LST-average and Standard Deviation (STD) files, we now make it possible to output
‘GOLDEN’ files that include all the calibrated input data for a given selection of LST bins, which
is helpful for post-facto examination. Furthermore, we allow the output of ‘REDUCEDCHAN’ files,
which contain all the data for all LST-bins, but for a reduced number of frequency channels.

4.3 Quick Overview of Results

One of the primary metrics used post-LST-binning to assess the quality of data and processing up til that
point is the “excess variance” – that is, the ratio of measured variance (either over nights, or between
neighbouring frequency channels) compared to the theoretical prediction based on auto-correlations. We
give an example plot of the mean of this quantity over baseline groups, as a function of frequency, in Fig.
4. Note that the night-to-night variance is 43% larger than the theoretical expectation when averaged over
all baselines and channels, though this is higher for ee polarizations, short baselines (< 60m) and sub-FM
channels. Although the night-to-night variance is significantly inflated, the frequency-to-frequency variance,
which is perhaps more important for our purposes, is only at a 20% mean excess, and only 8% when restricted
to intra-sector baselines.

The use of sigma-clipping at the level of 4σ reduces the baseline-and-frequency-averaged night-to-night
excess variance of redundantly-averaged data to 32%, though interestingly increases the channel-to-channel
variance to 30%.

In Fig. 5 we show the equivalent plot for non-redundantly-averaged data. This indicates that the mean
excess night-to-night variance above FM is stable at around 18%, with spikes around Orbcomm and the
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Figure 4: Mean excess variance (over baselines) as a function of frequency at LST∼2 hr, for the smooth-
calibrated, redundantly-averaged data.

Run Peak RAM BL Chunk Size Wall-time Per File Storage Size
Red-averaged No Sigma-Clip 5.3 GB 880 3.9 min 350 GB
Red-averaged w/ Sigma-Clip 5.4 GB 880 3.2 min 350 GB

Non-Red-averaged No Sigma-Clip 19.7 GB 1500 49.5 min 6300 GB

Table 2: Gross performance summary for different kinds of LST-bin runs in this IDR. Wall-time per file is
the average, obtained using pipeline status.py from hera opm. Peak RAM was obtained from in-script
logging information (see https://github.com/hera-team/hera-cli-utils for the implementation) using
tracemalloc. Peak RAM is mainly controlled by the baseline chunk size (and number of days binned). This
run was not well-optimized, as it was allocated 40GB of RAM, and used only half.

known RFI channels at ∼ 200 MHz. The width of these spikes may indicate low-level RFI around the
known channels, or some effect of smoothing. The channel-to-channel variance is at an excess of about 10%
across the full band. The fact that the non-redundantly-averaged data has significantly lower excess variance
probably indicates the presence of non-redundancies that should be identified prior to redundant averaging.

4.4 Performance and Bottlenecks

The new LST-binner improves performance (both wall-time and peak RAM usage) significantly. The primary
cause of the speedup is the pre-configuration of the matched files, and the vectorization over baselines, with
some speedup also coming from being able to partially read metadata on the input files (using pyuvdata’s
new FastUVH5Meta class). The major improvement in peak RAM usage comes from the use of numpy arrays
(i.e. vectorization) along with the pre-initialization and on-the-fly writing to the output files.

The major sink of time in the LST-binner is file I/O. Essentially the entire raw dataset needs to be read
to perform LST-binning. This could be improved by using faster data readers, but these are not employed
yet (due to the fact that they don’t support reading partial times yet).

Table 2 summarizes the performance aspects of the LST-binner for H6C IDR2, while Table 3 breaks
down the performance into components of the processing.
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Figure 5: Mean excess variance (over baselines) as a function of frequency at LST∼2 hr, for the smooth-
calibrated, non-redundantly-averaged data.

5 Summary of Data Products

Here we list as a quick reference all the data products available as part of this IDR.

5.1 Per-Night Data Products

All of the following are available either in /lustre/aoc/projects/hera/h6c-analysis/IDR2/24598?? or
in /lustre/aoc/projects/hera/h6c-analysis/IDR2/notebooks, which is linked here.

• zen.24598??.?????.sum.calibration_notebook.html: This is the per-file calibration notebook,
which includes plots and tables detailing antenna flagging, preliminary RFI excision, and redundant
and absolute calibration results. See subsection 3.2, subsection 3.3, and subsection 3.4 above for more
details. It produces the following:

– zen.24598??.?????.sum.ant_metrics.hdf5: Summary of information about flagging produced
by hera qm.ant metrics, which looks for dead antennas, low-correlation, and cross-polarized
antennas.

– zen.24598??.?????.sum.omni.calfits: Gain solutions that include both redundant-baseline
calibration and absolute calibration, as well as preliminary RFI flagging.3

– zen.24598??.?????.sum.ant_class.csv: Summary of statistics used for antenna classification
as good, bad, or suspect.

• antenna_classification_summary_24598??.html: This notebook summarizes the reasons antennas
were flagged over a whole night. It was primarily used for commissioning, but it is trivial to reproduce
it as part of the analysis pipeline.

• full_day_antenna_flagging_24598??.html: This notebook shows how and why antenna flagging
was harmonized and expanded over a whole day, adding flags to often-but-not-always flagged antennas
coming out of per-file processing. See subsection 3.2 above for more details. It produces the following
files:

3It is called “omni” for historical reasons, but now includes a full calibration solution.
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red-avg non-avg

Stage Step Time [sec] % % Time [sec] % %

Setup
Loading Config 55.6 17.0

55.8
53.8 1.5

1.5
Config Redundancies 126.5 38.8 - -

Reading
Data Reading 36.0 11.0

17.2
1058.6 29.6

54.7Build DataContainer 20.2 6.2 931.4 26.1
Read Calfiles - - 65.5 1.8

Work

Apply Calibration - -

20.7

200.5 5.6

25.4
Rephasing/Aligning 5.1 1.6 203.3 5.8

Sigma-Clip 53.3 16.3 - -
LST averaging 9.1 2.8 501.2 14.0

Writing Writing 10.6 3.3 3.3 29.2 0.8 0.8

Table 3: Timing of different steps of the LST-binning process, grouped into major stages. Note that the
times for the redundantly-averaged case come from a ‘golden LST’, and so incur some extra time for writing
the GOLDEN file. Those for the non-averaged case are for a regular file (which is the more common case).
Note that the setup phase for the redundantly averaged data is disproportionately long, and should be the
first aspect to be optimized in the future. In the non-averaged case, data reading is the dominant phase, as
might be expected. However, the fact that a quarter of the total time is taken in converting the data into
a DataContainer can surely be improved. Furthermore, using faster readers in the future that don’t require
reading nsamples arrays will speed this up.

– zen.24598??.?????.sum.antenna_flags.h5: These per-file flags include whether an individual
antenna-polarization was flagged for a given file, but the per-antenna waterfalls are either 100%
flagged or 100% unflagged—information about RFI flags is available here.

• full_day_rfi_24598??.html: This notebook creates the single-full day RFI waterfall, looking for
outliers in 2D-DPSS-filtered averaged autocorrelations. It documents the evolution of the flagging
mask. See subsection 3.4 above for more details. It produces the following files:

– zen.24598??.?????.sum.flag_waterfall.h5: This file, which complements the .antenna_flags.
h5 file, contains a single flagging waterfall for each file.

• calibration_smoothing_24598??.html: This notebook performs calibration smoothing, showing full-
day calibration solutions before and after smoothing. It also looks for phase flips and prints out when
it finds them. See subsection 3.3 above for more details. It produces the following files:

– zen.24598??.?????.sum.smooth.calfits: These “final” calibration solutions include the full set
of flagging above (.antenna_flags.h5 and .flag_waterfall.h5), as well as calibration solutions
constrained to be smooth in time and frequency.

– 24598??_aposteriori_flags.yaml: This YAML file contains a list of JD ranges, frequency
ranges, and antennas that are 100% flagged over the day. This is used in post-processing to help
make sure redundantly averaged data products have the same baseline keys.

• zen.24598??.?????.sum.postprocessing_notebook.html: This notebook visualizes redundantly-
averaged visibilities and nsamples, including after delay filtering. See subsection 3.5 It also produces
the following files:

– zen.24598??.?????.sum.abs_calibrated.red_avg.uvh5: Redundantly averaged visibility sums
with .omni.calfits gains applied, but with flags from .antenna_flags.h5 and .flag_waterfall.
h5.

– zen.24598??.?????.sum.smooth_calibrated.red_avg.uvh5: Redundantly averaged visibility
sums with the gains and flagged from .smooth.calfits applied.
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– zen.24598??.?????.sum.abs_calibrated.red_avg.dly_filt.uvh5: Redundantly averaged vis-
ibility sums with the gains and flagged from .omni.calfits applied and then delay filtered.
Autocorrelations are inpainted rather than filtered.

– zen.24598??.?????.sum.smooth_calibrated.red_avg.dly_filt.uvh5: Redundantly averaged
visibility sums with the gains and flagged from .smooth.calfits applied and then delay filtered.
Autocorrelations are inpainted rather than filtered.

– zen.24598??.?????.sum.abs_calibrated.red_avg.inpaint.uvh5: Redundantly averaged vis-
ibility sums with the gains and flagged from .omni.calfits applied and with flagged channels
inpainted.

– zen.24598??.?????.sum.smooth_calibrated.red_avg.inpaint.uvh5: Redundantly averaged
visibility sums with the gains and flagged from .smooth.calfits applied and with flagged chan-
nels inpainted.

– zen.24598??.?????.sum.smooth_calibrated.avg_abs_all.uvh5: Redundantly averaged visi-
bility sums with the gains and flagged from .smooth.calfits applied, but then all visibility
amplitudes are averaged together incoherently.

– zen.24598??.?????.sum.smooth_calibrated.avg_abs_auto.uvh5: Same as above, but with
just autocorrelations.

– zen.24598??.?????.sum.smooth_calibrated.avg_abs_cross.uvh5: Same as above, but with
just cross-correlations.

• full_day_systematics_inspect_245986??.html: This notebook looks for systematics by examining
full-day waterfalls in frequency/time space, delay/time space, and delay/fringe-rate space before and
after delay and fringe-rate filtering, as well as coherent and incoherent averaging and after forming
pseudo-Stokes I and Q. See subsection 3.5 for details.

5.2 LST-Binned Data Products

All notebooks are available in /lustre/aoc/projects/hera/h6c-analysis/IDR2/notebooks/lstbin-inspect
which is linked here. All data products are available in /lustre/aoc/projects/hera/h6c-analysis/IDR2/

lstbin-outputs/<CASE>/, where CASE is one of;

• nonavg – non-redundantly-averaged sooth-calibrated data run without sigma-clipping.

• redavg-smoothcal – redundantly-averaged, absolutely-calibrated, smooth-calibrated, no sigma-clipping.

• redavg-smoothcal-dlyfilt – redundantly-averaged, absolutely-calibrated, smooth-calibrated, delay-
filtered, no sigma-clipping.

• redavg-smoothcal-inpaint – redundantly-averaged, absolutely-calibrated, smooth-calibrated, fre-
quency in-painted, no sigma-clipping.

• redavg-smoothcal-sigclip – redundantly-averaged, absolutely-calibrated, smooth-calibrated, with
sigma-clipping.

• redavg-abscal – redundantly-averaged, absolutely-calibrated (but not smooth-calibrated) data, with
no sigma-clipping.

• redavg-abscal-dlyfilt – redundantly-averaged, absolutely-calibrated (but not smooth-calibrated),
delay-filtered, with no sigma-clipping.

• redavg-abscal-inpaint – redundantly-averaged, absolutely-calibrated (but not smooth-calibrated),
frequency in-painted, with no sigma-clipping.

Each of the above CASE directories has the following files:

• lstbin-config.toml – an exact copy of the pipeline configuration file used to create this output data.
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• environment.yaml – an exact copy of the conda environment used to run this data.

• file-config.yaml – the file-matching configuration of the LST-bin outputs, created by
build makeflow from config.py in hera opm.

• zen.LST.<LSTRADIAN>.sum.uvh5 – standard UVH5 file containing LST-averaged data for the two
LST-bins starting at LSTRADIAN.

• zen.STD.<LSTRADIAN>.sum.uvh5 – standard UVH5 file containing the night-to-night standard devia-
tion (for both real and imag components) for the two LST-bins starting at LSTRADIAN.

• zen.GOLDEN.<LSTRADIAN>.sum.uvh5 – standard UVH5 file containing the calibrated input visibilities
for all nights within the LST-bin starting at LSTRADIAN.

• zen.REDUCEDCHAN.<LSTRADIAN>.sum.uvh5 – standard UVH5 file containing the calibrated input vis-
ibilities for all nights within the LST-bin starting at LSTRADIAN, but only for channels 150, 750 and
1250.

6 Known Issues and Possible Future Improvements

H6C IDR 2.1 is not the final work on H6C analysis; it may not even be the final word on this particular data
set. We are tracking a handful of issues for aspects of the analysis that are we currently think need further
investigation and perhaps improvement.

• While the new abscal method discussed above is substantially more stable than our previous algorithm
when calibrating against a simulation for all LST, it is still not perfect. As discussed starting here,
there are still a few LSTs for frequencies where solutions go awry, likely due to bright sources near
the horizon (especially Cass A and Cyg A). While we refined the algorithm to minimize this effect, an
improved sky model might also improve the calibration. For now, calibration smoothing is expected
to minimize the effect of these calibration errors.

• With a calibrated, LST-binned data set, we can use frequency-redundancy to form a nucal model
of visibilities on baselines in certain frequently-sampled orientations. These visibilities are guaranteed
to be smooth in a physically-motivated way. These could be useful for solving for (some of) the
degeneracies of redundant-baseline calibration. Another possible approach is to take the nucal and
go back to the original uncalibrated visbilities, starting calibration from scratch in a way designed to
produce calibrated visbilities with minimal spectral structure. This technique should also allow us to
find RFI.

• Relatedly, some work has been done to try to calibrate nights to one another before LST-binning. This
LSTcal idea might help mitigate the so-called “excess variance” problem (see below).

• As it stands, either we flag a frequency and time for all antennas, or we flag an antenna for all times
and frequencies (in a file, or sometimes over a whole night). We do not have antenna-dependent flag
waterfalls. However, we see some evidence in the full_day_rfi notebooks that certain antennas have
a lot more residual power after DPSS filtering of their autocorrelations than others. Whether this is
a problem with the filtering or the antennas themselves, and whether it affects cross-correlation, is a
matter than deserves further investigation.

• When plotting redcal χ2 over the whole day (which we do in the calibration smoothing notebooks),
we see unflagged spikes in χ2 that might be due to RFI. Or it could simply be that the calibration
solution there was bad, but the visibilities are fine and smooth cal will basically fix the problem.
Whether we should be using χ2 as an additional source of flagging, or whether it simply reveals some
other issue that should be caught when inspecting visibilities, remains to be investigated.
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• When performing per-night inpainting (which for now is only done on redundantly-averaged baselines),
we use the same DPSS model that we subtract to perform delay filtering. This is at the horizon or
150 ns, whichever is larger. This removes much of the foregrounds, but we know residual foregrounds
and systematics exist beyond that scale. No attempt is made to inpaint higher delay systematics, like
the fringe-rate 0 mode or any of the mutual coupling, which might make those effects harder to filter
off in LST-binned data. Perhaps we should be fringe-rate filtering before LST-binning? This remains
an open research question.

• After LST-binning, the resulting LST-binned data is inspected with the lstbin-inspect notebook. One
of the key metrics investigated by this notebook is that of ‘excess variance’, which measures the ratio of
observed variance on a particular baseline-LST-channel compared to its theoretical variance, as derived
from the autocorrelations and Nsamples. Murray and Dillon, 2023b derived theoretical distributions of
this ratio, and the LST-bin inspect notebook explores the relationship of the excess variance with
properties of the baselines (eg. length, orientation) and frequency. The mean excess variance over
all baselines averages ∼ 50% for redundantly-averaged data, and ∼ 20% for non-redundantly-averaged
data, which is higher than we saw in H1C IDR3. The solution is most likely to be found in the problems
mentioned above.
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