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Abstract

Averaging nominally redundant visibilities together (redundant either in baseline vector or LST) is
an important step in HERA’s analysis. While averaging these visibilities together, one can also compute
estimates of higher order statistics, in particular the variance. Here we address the question of what the
theoretical distribution of the measured sample variance should look like under certain conditions, which
makes it possible to perform more insightful tests of whether observations exhibit “excess” variance with
respect to the prediction.

1 Non-redundantly-averaged LST-binned visibilities

Let us assume a model of visibilities in which any particular baseline, at any particular LST and frequency,
has a complex visibility drawn from a complex Gaussian distribution with mean µ(b,LST, ν) and variance
σ2
C(b,LST, ν). For the rest of this section, we assume baselines, LSTs and frequencies to be independent,

and therefore drop their notation. Furthermore, we assume that the real and imaginary components of the
visibility are iid, and both drawn from a real-valued Gaussian distribution with variance σ2 = σ2

C/2.
In the case that the visibilities are not redundantly-averaged, the unweighted sample mean visibility over

nights (in the same LST bin) is an unbiased, minimum-variance estimator of the mean, µ:

V̄ = µ̂ =
1

Nd

Nd∑
j=1

Vd. (1)

Here, Nd is the number of unflagged nights/days observed for that LST bin, frequency and baseline. An
estimate of σ2 may be determined in the usual way, via the sample variance:

S2 = σ̂2 =
1

Nd

Nd∑
j=1

(Vj − V̄ )2, (2)

which is itself a random variable. We can easily find the expectation of the sample variance:

⟨S2⟩ = 1

Nd

∑
j

⟨V 2
j ⟩ − 2⟨Vj V̄ ⟩+ ⟨V̄ 2⟩, (3)

since Var(X) = ⟨X2⟩ − ⟨X⟩2, we have

⟨S2⟩ = 1

Nd

∑
j

σ2 + µ2 − 2

Nd

⟨V 2
j ⟩+

∑
k ̸=j

⟨VjVk⟩

+Var(V̄ ) + µ2, (4)

=
1

Nd

∑
j

σ2 + µ2 − 2

Nd

[
σ2 + µ2 + (Nd − 1)µ2

]
+

σ2

Nd
+ µ2, (5)

=
1

Nd

∑
j

σ2 − σ2

Nd
= σ2

(
Nd − 1

Nd

)
. (6)
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In practice, the sample variance for a particular baseline/LST/frequency is itself a random variable.
We’d like to know the distribution of γ = S2/⟨S2⟩ = S2Nd/(σ

2(Nd − 1)) – a quantity we’ll call the “excess
variance”, which measures the deviation of measured/sample variance from the expectation. This can help
understand whether measurements are conforming with expectation. Note that since the normalization of γ
(i.e. the expected variance) is not a random variate, we can write

γ =
1

Nd

Nd∑
j=1

(Xj − X̄j)
2, (7)

with X = V
√

Nd

σ(Nd−1) . This transforms X into a Gaussian random variable with mean zero and variance

σ2
X = Nd/(Nd − 1).
According to MathWorld1, the distribution of the sample variance for N variates with intrinsic variance

σ2 is a Pearson Type III distribution:

f(S2) =
βα

Γ(α)
(S2)α−1e−βγ , (8)

with β = N/(2σ2) and α = (N − 1)/2. In the case of our γ then, we can substitute σ2
X to determine

α = β = (Nd − 1)/2, i.e.

f(γ) =
ββ

Γ(β)
γβ−1e−βγ . (9)

Note that this is not in general a χ2-distribution, as it has more flexibility in the exponential than the χ2.
It is in fact what you get by drawing samples from a chi2Nd−1 distribution, then dividing each variate by
Nd − 1, and is a special form of the Gamma-distribution where the shape and rate parameters are equal,
and given by β2. This distribution has the properties

µ = 1, (10)

mode = 1− 2/(Nd − 1) ≤ µ, (11)

σ2
γ = 2/(Nd − 1), (12)

skew =
√
8/(Nd − 1), (13)

kurt = 12/(Nd − 1). (14)

We might also ask what the distribution of an average of M γ variates is (e.g. an average over baselines
or times or frequencies). According to answers on Math StackExchange3, the sum of gamma variables with
identical scale/rate parameters is another gamma variable with the same rate, and a shape parameter that
is the sum of shape parameters of the variates being summed. Here, since we are taking the average, we
must modify the scale parameter by a factor of M , and note that the final shape parameter will just be
Mα ≡ M(Nd − 1)/2.

2 Redundantly-Averaged Visibilities

Now, let us extend the results of the previous section to the case in which visibilities have been redundantly
averaged before LST-binning. We thus deal with not a particular baseline, but a baseline type. This baseline
type may have Nblg baselines in it, but not all of them are unflagged for a given LST/frequency on any given
night. This means that the theoretical variance for the visibility on any given night can change, depending
on the number of baselines unflagged: σ2

j = σ2/Nbl,j, j ∈ (1, Nnights).

1https://mathworld.wolfram.com/SampleVarianceDistribution.html
2It turns out that using the gamma distribution within scipy is much easier than using the Pearson Type III distribution,

which appears to have a different parameterization than the one we use here.
3https://math.stackexchange.com/questions/250059/sum-of-independent-gamma-distributions-is-a-gamma-distribution
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Now, the minimum-variance unbiased estimator of the mean visibility (assuming perfect LST- and
baseline-redundancy) is

V̄ = µ̂ = w̄
∑
j

Vj/σ
2
j , w̄ =

∑
j

σ−2
j

−1

, (15)

which has the theoretical variance Var(V̄ ) = w̄. We also form a weighted sample variance:

S2 = w̄
∑
j

(Vj − V̄ )2/σ2
j , (16)

for which each term has the expectation

⟨S2
j ⟩σ2

j = ⟨V 2
j ⟩ − 2⟨Vj V̄ ⟩+ ⟨V̄ 2⟩, (17)

= σ2
j + µ2 − 2w̄

⟨V 2
j ⟩/σ2

j +
∑
k ̸=j

⟨VjVk⟩/σ2
k

+Var(V̄ ) + µ2, (18)

= σ2
j + µ2 − 2w̄

1 + µ2/σ2
j +

∑
k ̸=j

µ2/σ2
k

+ w̄ + µ2, (19)

= σ2
j − w̄ (20)

and so the whole has expectation

⟨S2⟩ = w̄

Nd − w̄
∑
j

σ−2
j

 = w̄(Nd − 1). (21)

Note that if each night has the same number of samples (i.e. the same variance), we have w̄ = σ2/Nd, and
the expectation of the sample variance reduces to the same form we derived in the previous section.

Now, we can ask what the distribution of γ = S2/⟨S2⟩ = S2/(w̄(Nd−1)) is (i.e. the distribution of ‘excess
variance’), as in the previous section. It turns out to be exactly the same distribution as in the un-weighted
case. This can be shown by a coordinate transformation4 via an orthoganal matrix. The proof is along the
following lines.

Take ξ to be the non-normalized weighted variance, i.e.

ξ =

Nd∑
j

(Vi − V̄ )2/σ2
i . (22)

This expands to

ξ =

Nd∑
i=1

Y 2
i − V̄ 2/w̄, (23)

where Yi are independent standard normal variables. Now, the following statement holds, that

N∑
i=1

Y 2
i − P 2

1 ∼ χ2
n−1, (24)

if Yi are iid standard normal, and P = QY is a matrix transformation of Y where Q is an orthogonal matrix.
This holds because

∑
Y 2
i ≡

∑
V 2
i . In our case, V̄ 2/w̄ can be written as the first row in a matrix P = QY ,

where the first row of Q is
√
W{1/σ1, 1/σ2, · · · , 1/σN}. Thus, the distribution of ξ is χs

n−1. To get the
distribution of γ = ξ/(n− 1) merely involves doing a linear transform of variables, which gives back Eq. 9.

This is a little counter-intuitive, because you’d expect that the distribution should have some memory
of the relative weights of the input samples, but it depends only on Nd – the number of nights that aren’t
completely flagged. That is, weights of zero mean something, but any other weight, however infinitesimally
above zero, makes no difference.

4https://math.stackexchange.com/questions/3563361/find-the-distribution-of-xi
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Figure 1: Distribution of γ for N = 4.

3 Simulations

Setup the following Python code to create a simulation:

1 def simulate(variance: np.ndarray , size =100000):

2 nd = len(variance)

3 w = 1/np.sum (1/ variance)

4

5 Z = np.random.normal(size=(size , nd))

6 first_term = np.sum(Z**2, axis =1)

7 second_term = np.sum(Z / np.sqrt(variance), axis =1) **2 * w

8 return (first_term - second_term) / (nd - 1)

Then we can create plots of the distribution for different variance vectors, (i) including all ones, (ii) a
single very low variance, and (iii) half-low half-high variances.

4 Conclusion

Somewhat counter-intuitively, we find that the distribution of “excess variance” (that is, the ratio of measured
sample variance to expected variance based on e.g. auto-correlations) follows a special Gamma distribution
(equivalently, a re-scaled χ2-distribution), Eq. 9, that depends only on the number of unflagged samples (and
not the individual variances of the samples). While counter-intuitive, this result is borne out by simulation
as well as theoretical derivation.

The following points are potentially useful caveats/extensions of this work:

1. Here we have assumed we know the ‘true’ variance of the samples when we perform the averaging and
sample variance calculation. If the weights applied to the averaging are biased, or represent estimates
of the variance (both of which are invariably true in practice), the distributions derived here will be
invalid (in proportion to the precision and accuracy of the estimate). In particular, we suspect (but
have not proven) that inflating the prior on σ2

j will significantly affect the distribution for small Nd.

2. In practice, two forms of weighting can be used. The first is to weight directly by Nsamples,j ≡ Nred,j.
For this to be consistent with the derivation in this memo, one must assume both that the intrinsic
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Figure 2: Distribution of γ for N = 100.

variance of a redundantly averaged visibility on a particular night j is given by σ2
j,bl = σ2

bl/Nred,j , and

that one can get a very precise and accurate estimate of σ2
bl (e.g. via the averaged autocorrelations of

the constituent antennas). The second is to weight by σ2
j,bl directly, which accounts for potential night-

to-night deviations of the variance, but at the expense of potentially introducing spectral structure via
systematics in the autocorrelations. It is our recommendation to use the first approach (weighting by
Nsamples), and treating observed deviations in the auto-correlations night-to-night as indications of bad
things happening rather than trying to inverse-variance-weight your way out of them.
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