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 Abstract 

 We fit spherical harmonics to electromagnetic simulations of the HERA Vivaldi primary beam 

 (Fagnoni et al. 2021). Spherical harmonics are a natural basis for compression of the beam, and 

 help us to understand the angular symmetries and structure of the beam. We test the accuracy 

 of the reconstruction while varying the number of spherical harmonic modes, and perform the 

 fitting on both the power and e-field beam models. To-date, analytic fits to HERA beam models 

 have been limited to simplifying assumptions such as azimuthal averaging, working solely on 

 the power beam, or extrapolating from nearby frequencies. Our complex-valued spherical 

 harmonic fits show good agreement with the true HERA beam across a wide range of 

 frequencies as well as for both the main lobe and far sidelobes (with errors at or below ~1%). 

 Once the beam is compressed to a set of harmonic coefficients, we can evaluate the 

 compressed beam at new zenith and azimuth angles fairly rapidly (i.e perform interpolation), 

 with a run-time that is on-par (and in some cases faster) with the spline interpolation methods in 

 pyuvdata UVBeam (accounting for the UVBeam.interp performance boost implemented in 

 2022). For the e-field beam, our SH interpolation is over a factor of 2 improvement in speed 

 over UVBeam. In addition, a spherical harmonic compression significantly reduces the size of 

 the beam in memory, which will be important for large N_antenna visibility simulations with 

 antenna-dependent beam models. 
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 Introduction 

 HERA and other 21 cm telescopes must have a precise understanding of the antenna primary 

 beam response. The antenna primary beam is important for high dynamic range calibration, 

 visibility simulation, and foreground subtraction. Knowledge of the beam can be derived in the 

 field from empirical measurements of satellites or radio point sources with a known intrinsic flux. 

 They can also be derived from electromagnetic simulations of the antenna front-end, including 

 the feed and any surrounding material (such as the HERA dish). However, representing the 

 beam in a discretized spherical coordinate space may be suboptimal, as we expect the beam 

 response to be strongly correlated at neighboring angular coordinates. Therefore, compressing 

 the beam response to a smaller dimensionality with a basis of intrinsically angularly smooth 

 functions may prove beneficial to the applications listed above. Furthermore, our compressed 

 basis may be a more memory-efficient way to store large quantities of beams, and may enable 

 for faster angular interpolation. 

 Spherical harmonic expansion of antenna beam models has been studied in the literature for 

 the MWA and for an SKA prototype (Sokolowski et al. 2017, Kriele et al. 2022). However, the 

 usefulness of this technique has not yet been explored for HERA. We explore this in the context 

 of electromagnetic simulations of the HERA antenna, outfitted with a 14-meter parabolic dish 

 and a Vivialdi feed (Fagnoni et al. 2021). These simulations provide the complex, far-field 

 response of the antenna for a single dipole feed for the  and  linear polarizations of incident θ ϕ

 radiation (what we call the E-field beam). These can be combined to form a “power beam” as 
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 polarization. While recent works have achieved decent analytic fits to the HERA beam model, 

 they have suffered from some simplifying assumptions such as azimuthal symmetry or 

 extrapolation from nearby frequency channels (Choudhuri et al. 2020, Boyer et al. 2021), which 

 have made accurate fitting of the complex beam across a wide frequency range in both the 

 main lobe and sidelobes difficult. 
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 Our goal in this work is twofold:  1. to test the tradeoff between accuracy and complexity 

 when projecting HERA beam models onto spherical harmonics of increasingly large number of l 

 and m modes, and 2. to test the speed of beam interpolation with spherical harmonics relative to 

 existing spline methods in pyuvdata. Note that while electromagnetic modeling software such as 

 FEKO or CST can compute and store the far-field beam pattern intrinsically as spherical 

 harmonic modes, this is not what this work explores. Instead, we assume we are given a beam 

 model that has been computed in discretized spherical coordinates, and we are concerned with 

 fitting this beam model with our own spherical harmonics. 

 Beam Fitting Framework 

 Here we review the framework for generating the basis functions used to decompose the beam 

 (the spherical harmonics), and the fitting algorithm used to solve for the harmonic coefficients of 

 the beam. The ortho-normalized spherical harmonics can be written as 

 (2)  𝑌 
 𝑙 
 𝑚 θ, ϕ( )   =    ( 2  𝑙 + 1 )

 4 π
( 𝑙 − 𝑚 )!
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 𝑙 
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 where  is the Associated Legendre polynomial, and l and m are the degree and order of the  𝑃 
 𝑙 

 spherical harmonics, respectively. We implement this in Python code using the 

 scipy.special.lpmv()  function for the Legendre polynomial.  For improved performance 

 when computing the spherical harmonics for an array of l, m and an array of theta, phi, we 

 reshape the theta and phi dimensions such that they are broadcasted across the l, m arrays, 

 thus enabling us to compute the spherical harmonics for all l, m, theta, and phi in one function 

 call (as opposed to setting up a FOR loop over l,m or theta,phi). 

 Our spherical harmonic function can be used to generate an (N_pixels, N_modes) matrix that 

 takes the transformation from harmonic space to angular space. Calling this matrix  , we can  𝐴 

 write our linear model relating the harmonic coefficients to the beam as 

 (3)  𝑦    =     𝐴     𝑥 
 where y is the beam in spherical coordinates of shape (N_pixels, N_frequencies), A is the 

 spherical harmonics of shape (N_pixels, N_modes) and x are the harmonic coefficients of shape 

 (N_modes, N_frequencies). 
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 Given our linear model, we want to estimate the best-fit coefficients given our simulations of the 

 beam, which we can achieve through the standard linear least squares inversion formula 

 (4)  𝑥 =  𝐴  𝐻  𝐴 ( )
− 1 

 𝐴  𝐻  𝑦 

 where  denotes the conjugate transpose of A. Note that the inverse of  is not strictly  𝐴  𝐻  𝐴  𝐻  𝐴 

 possible, so instead we use a pseudo-inverse. Given our best-fit guess for the harmonic 

 coefficients, we can forward model our best-fit beam in angular coordinates as 

 (5)  𝑦 =  𝐴  𝑥 

 Note that in what follows, we only generate spherical harmonics for non-negative m modes (e.g. 

 Figure 2). This is because we always cast the beam to real values before fitting it, meaning the 

 negative m modes are redundant. To compensate for this, when taking the forward transform 

 (Eq 5) we multiply all m > 0 modes by a factor of 2 before taking the transform. Note that we 

 even do this for the complex-valued  E field beam because we fit its real and imaginary 

 components separately. Once we’ve compressed the beams into their harmonic coefficients  ,  𝑥 

 we can take the forward transform back to angular space at the same coordinates as the 

 original data, or we can choose to evaluate them at entirely new angular coordinates. Doing this 

 requires the construction of a new  matrix at the new locations on the sphere, which amounts  𝐴 

 to an interpolation scheme using spherical harmonics. 
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 Figure 1 |  This shows an example of some of the spherical  harmonics we use to fit the beam. Note we 

 only plot the real component but the functions are intrinsically complex. Also note that the left plot shows 

 one of the modified m=0 spherical harmonic modes discussed below when fitting the E-field beams 

 (which purposely breaks its inherent azimuthal symmetry), whereas for the power beams we use the 

 standard m=0 spherical harmonic modes described in Eqn 2. 

 Fitting HERA Beams 

 We first load the HERA beam data from Fagnoni et al. 2021 using the pyuvdata.UVBeam interface. 

 The beam data are 6 dimensional with the following axes: Naxes, Nspws, Nfeeds, Nfrequency, 

 Ntheta, Nphi.  Before fitting, we index the data for all frequencies, theta, and phi, and choose the 

 zeroth index for Nspws and Nfeeds. The beam data are simulated on a uniform grid in zenith and 

 azimuth with a 1 degree spacing and span 50 - 250 MHz with a 1 MHz spacing. Next we generate a 

 spherical harmonic transformation matrix (A) for all angular coordinates of the beam for a set of l, m 

 out to Lmax = 35. We chose Lmax = 35 after trying Lmax = 25 and finding that it was not quite 

 sufficient to model the beam. 

 Power Beams 

 For the power beam, there is only one Naxes entry in the beam data. The power beam data are 

 real-valued and non-negative. Note that before fitting the power beam we take its square root. We 

 then use Eqn 4 to solve for the harmonic coefficients for each frequency channel. Figure 2 shows the 

 log10 of the amplitude of these coefficients for two frequency channels. 
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 Figure 2 |  Log10 of the harmonic coefficient amplitude  for the power beam fits. Here we use an Lmax of 

 35. The left side graph is for 50 MHz frequency and the right is for 250 MHz frequency. 

 Suppression of the odd m modes implies a 180-degree rotational symmetry in the beam. While 

 Figure 2 shows hints of this structure, the existence of non-zero odd m modes shows that there 

 is not a true rotational symmetry in the HERA Vivaldi feed, which is likely due to the triangular 

 support structure holding the feed that breaks the otherwise perfect 180-degree symmetry of the 

 feed (Fagnoni et al. 2021). The dominance of the power in the bottom and lower-left portions 

 suggests a natural way to reduce the dimensionality of the beam while retaining the majority of 

 the features in the beam. This will motivate our choice for l, m cuts below. 

 To assess the goodness of the fit, we compare the true beam data against the best-fit beam 

 data (Eqn 5) side-by-side in Figure 3. The left panel shows the true beam, the center shows the 

 fitted beam, and the right shows the difference between the two. 

 To understand the tradeoff between fit accuracy and computational speed, we explore six 

 different scenarios where we increase the number of modes in the spherical harmonic 

 expansion. Case 1 has the lowest number of modes and therefore yields the most compression, 

 is the fastest to evaluate, but is the least accurate in its beam reconstruction. Case 6 has the 

 highest number of modes and is therefore the least amount of compression, slowest to 

 evaluate, but is the most accurate (and corresponds to our fiducial example of all modes out to 

 Lmax=35). For each case we set up an interpolation problem where we generate a new 
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 spherical harmonic matrix for the theta, phi values of an NSIDE 64 HEALpix map (for theta < 90 

 degrees, yielding Npix=25000) given the unique set of l, m modes for the specified scenario. We 

 use Eqn 4 and 5 to generate the best-fit beam at these new angular coordinates, and record the 

 run-time (averaged over 7 runs). Profiling was performed on the NRAO CPU cluster. 

 Figure 3 |  The true power beam (left), fitted power  beam (center) and their difference (right) for three 

 different frequency channels. All fits are done with the same Lmax=35. Given that the beam is smaller at 

 higher frequency, it is not surprising that a fixed Lmaxl leads to a poorer fit relative to the beam at lower 

 frequencies. Nonetheless, an Lmax=35 gives a fairly good fit to the beam. 
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 Case #  Run time [seconds]  (Lmax, Mmax, even M)  Nmodes 

 1.  1.6 s  (35, 10, True)  186 

 2.  2.2 s  (35, 15, True)  232 

 3.  3.3 s  (35, 25, True)  312 

 4.  3.9 s  (35, 35, True)  342 

 5.  4.2 s  (35, 15, True)  456 

 6.  7.6 s  (35, 35, False)  666 

 Table 1 |  This is a table for Case 1- 6 variation  of Lmax and Mmax conditions for interpolating the power 

 beam. Each Case # also has a measurement of the Run time in seconds. Column 3 is the different Lmax, 

 Mmax and even M conditions. Column 4 is the Nmodes for each case. Even M means we keep only even 

 m modes and truncate odd m modes from the fit. 

 Table 1 shows the run-time and number of modes for each case. In each scenario we use all l 

 modes out to Lmax=35, but truncate m to be m < Mmax. In Case 1 - 5, we also truncate all odd 

 m modes. Note that Case 6 is simply our fiducial case from before where we use all modes out 

 to Lmax=35. We profile the run-time of the interpolation in Appendix A and show that it is 

 dominated by the construction of the A matrix, meaning we expect run-time to scale directly with 

 Nmodes, demonstrated in Figure 4. 

 Figure 4 |  This shows the run-time of each 

 case in Table 1, showing the run-time 

 scaling against Nmodes of the spherical 

 harmonic matrix when interpolating the 

 power beam. The run-time is dominated by 

 the construction of the 

 spherical harmonic A matrix, thus showing 

 a direct correlation with Nmodes. 
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 Figure 4 plots the measured run-time against Nmodes for each case in Table 1, showing the 

 direct correlation between run-time and Nmodes. Note that the existing spline interpolation 

 method in  pyuvdata.UVBeam  for the same HEALpix setup  has a run-time of 2.07 seconds 

 (even after the UVBeam interpolation performance boost introduced in June 2022). This means 

 that our Case 1 interpolation run-time  improves interpolation  speed by roughly 25%  ; 
 however, this is also the least-accurate fit of the various cases explored. 

 Figure 5 |  This is a line plot of the best fit line  of a true beam against the fit of at 75 MHz, 125 MHz, and 

 175 MHz. The true beam values are in gray, the best fits are dashed lines. Case #1 shows a less 

 accurate but faster model (left). Case #6 is a more accurate but slower model (right). While the main-lobe 

 is fit well in both cases, case 6 does a better job at fitting the far sidelobes. 

 To show more clearly the accuracy of the fits, Figure 5 compares the true power beam (gray 

 lines) against the fitted power beam (dashed lines) for case 1 and case 6 for a handful of 

 frequency channels. We see that case 1 provides a good fit to the main lobe, and provides a 

 decent but not exact fit to the sidelobes. Case 6 improves upon this in most regions, except for 

 the first sidelobe at 125 MHz which is still not perfectly captured (and likely requires a higher 

 Lmax). 
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 E-field beams 

 Next we repeated the same process for the E-Field beam data. This beam is made of complex 

 numbers and is no longer non-negative. Furthermore, the Naxes dimension now holds two 

 elements, which can be thought of as the two terms in Eqn 1 (i.e. a row of the 2x2 

 direction-dependent Jones matrix). We use the same spherical harmonic setup as before, but to 

 accommodate the complex beam we fit the real and imaginary beam components separately. 

 Figure 6 |  This shows the amplitude of the harmonic  coefficients of the real and imaginary component of 

 the E-field beam for one element of the Naxes dimension. Relative to the power beam, the power of the 

 e-field beam coefficients is more tightly confined to low m modes. 
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 One crucial change was made to the spherical harmonics to allow us to fit them to the e-field 

 beams: for all modes with m = 0, we multiplied the spherical harmonics by  . This was  𝑒𝑥𝑝  𝑖 ϕ[ ]

 done because the e-field beams do not have any azimuthally-constant structure, which needs to 

 be reflected in the basis functions as well. This means when we take the forward transform (Eqn 

 5) we now multiply all harmonic coefficients (m >= 0) by 2 before taking the forward transform. 

 Figure 6 shows the amplitude of the harmonic coefficients of the real and imaginary components 

 of the E-Field beam for one of the elements in the Naxes dimension (which we call Beam 1 and 

 Beam 2). We can see that relative to the power beam, the e-field beam is better described by 

 the low m modes of the spherical harmonics. 

 Figure 7 |  This is a comparison of the E-field beam  1 at 175MHz, showing the true beam (left), the fitted 

 beam (center) and their residual (right). For the same Lmax, we can see that the E-field beam fits have 

 significantly lower residual than the power beam. 
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 Figure 7 shows the best-fit beams for the real and imaginary components of beam 1. We see 

 that the fit is visually very good, fitting the main-beam and far-sidelobes quite well, and 

 inspecting the residuals we see that the difference is much smaller than when we fit the power 

 beams directly. As we will see below, this is because the intrinsic e-field beams have angular 

 structures smoothly oscillating from negative to positive, and when we take the ABS of this to 

 form the power beam we insert a sharp discontinuity that is not well fit by our Lmax=35 spherical 

 harmonics. To further drive this point home, we compare the true power beam against the 

 reconstructed power beams of the best-fit E-field beams in Figure 8, showing residuals that are 

 significantly smaller than Figure 3. In all, this suggests that beam fitting and interpolation with 

 spherical harmonics should be done on the e-fields, which can then used to form the power 

 beam if needed. 

 Figure 8 |  This shows the true power beam (left) the  reconstructed power beam from the best-fit e-field 

 beams (center) and their residual (right). We can see that the residuals are much smaller when we fit the 

 e-fields and then form the power beam, as opposed to when we fit the power beams directly (Figure 3). 
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 Similar to before, we compare a couple of scenarios where we truncate our spherical harmonic 

 Nmodes to compare the run-time of beam interpolation and the accuracy of the resultant fits. 

 The interpolation setup is the same from before. Table 2 records the run-time of each case, 

 where again we order the cases from fewest Nmodes (Case 1, fastest to run but least accurate 

 fit) to most Nmodes (Case 6, slowest to run but most accurate fit). Note that the UVBeam 

 interpolation run-time for the efield beam was 7.44 seconds, meaning our Case 1 interpolation 

 run-time is a factor of 7 in speed-up. Even for Case 3 (which is a more accurate fit) we get >2x 

 speedup. 

 Case #  Run time [seconds]  Lmax, Mmax  Nmodes 

 1.  1.1 s  (35, 2)  105 

 2.  1.6 s  (35, 4)  170 

 3.  3.0 s  (35, 8)  288 

 4.  5.6 s  (35, 16)  476 

 5.  8.8 s  (35, 32)  660 

 6.  9.0 s  (35, 35)  666 

 Table 2 |  The interpolation run time for Case 1- 6  interpolation of the e-field beam. Here we only truncate 

 Mmax and keep Lmax = 35, and we do not truncate odd Nmodes. 

 Figure 10 |  This shows the spherical 

 harmonic e-field beam interpolation run-time 

 for each case against the number of 

 spherical harmonic Nmodes. 
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 Figure 9 |  This shows the true power beam (gray) 

 against the reconstructed power beam from the 

 best-fit e-field beams (dashed) at 75 MHz, 125 

 MHz, and 175 MHz. Case #1 shows a less 

 accurate but faster model (left). Case #3 is an 

 improved but slower model (right). Case #6 is a 

 more accurate but slower model (bottom left). 

 To more closely compare the accuracy of the fits in each case, Figure 9 shows the power beam 
 reconstruction from the best-fit e-field beams for cases 1, 3 and 6. This more clearly shows the 
 improved accuracy of the fit relative to fitting the power beams directly. 
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 Conclusion 

 We demonstrate fitting spherical harmonic functions to electromagnetic simulations of the HERA 

 primary beam response. We explore run-time and accuracy of the fits on both the power beams 

 and complex e-field beams, while varying the number of spherical harmonic modes in the fit. 

 Relative to existing methods of representing the HERA beam that have made simplifying 

 assumptions about the beam (e.g. Choudhuri et al. 2020, Boyer et al. 2021), our method 

 operates on the full angular structure of the beam, and fits each frequency mode independently. 

 As a consequence, our fits are considerably more accurate, with residual errors on the e-field 

 beam fits of roughly 1% or less (Figure 8). When comparing decomposition of the power beams 

 and e-field beams, we see that it is best to decompose the e-field beams first, interpolate if 

 needed, and then reconstruct the power beams. This has multiple advantages driven largely by 

 the fact that the e-field beam is more compactly represented in harmonic space than the power 

 beam (due to the sharp discontinuities created when taking the ABS of the e-field beam). This 

 means we need less modes to accurately represent the beam, which then translates to faster 

 and more memory efficient interpolation because we don’t need to store as many harmonic 

 modes in the A matrix. In conclusion, we show that analysis pipelines that require the beam 

 response can be made faster and more memory efficient by using a spherical harmonic 

 representation of the beam. While this has been shown before for other telescopes (e.g. 

 Sokolowski et al. 2017), we show the effectiveness specifically for the HERA Vivaldi beam 

 model for the first time. 

 Below we summarize the important take-aways from this work. 

 ●  Memory-efficient beam storage:  An (N_modes = 500,  N_pix = 65160) complex128 

 spherical harmonic matrix uses 0.52 GB of memory, whereas an (N_freq = 128, N_pix = 

 65160) complex128 e-field beam model uses 0.26 GB of memory. However, if we want a 

 suite of perturbed beam models we would naively need to store a separate beam for 

 each model, bringing the cost storage cost to 0.26 x N_beams GB. For the harmonic 

 decomposition, we only need a single spherical harmonic matrix, and we instead store a 

 separate coefficient vector for each beam, which is of negligible size, keeping the 

 storage requirement to ~0.5 GB. 

 ●  Fast and accurate beam interpolation:  For the power  beam, our Case 1 scheme sees 

 a slight speed-up (factor of 1.25) over existing methods, but is likely of poorer accuracy. 

 For the e-field beam, however, we get over a factor of 7 improvement in speed for our 
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 Case 1 scheme, and over a factor of 2 improvement in speed for our more accurate 

 Case 3. This is compounded in the regime of interpolating multiple beam models (e.g. 

 when simulating antenna-dependent beams for large N_antenna visibility simulations), 

 where, with current spline interpolation schemes, each beam must be interpolated 

 separately (each beam requires its own UVBeam object). This incurs a linear N_antenna 

 scaling of the beam interpolation, which will be prohibitive for large N_antenna 

 simulations. However, our spherical harmonic interpolation has a nearly flat scaling with 

 N_antenna because as demonstrated in Appendix A, the bottleneck is the construction 

 of the Ylm matrix, which can be used for all antennas. This brings our e-field Case 3 

 interpolation speed up relative to existing methods to a factor of 2 x N_antenna. 

 ●  Understanding the structure in the beam:  The harmonic  coefficients tell us about the 

 intrinsic structure of the beam and its symmetries. Figure 2 tells us that the beam has a 

 slight 180 degree rotational asymmetry, which was not observed in previous dipole 

 beams but is expected in the Vivaldi feed due to the non-symmetrical elements in the 

 Vivaldi support structure. 

 Next we summarize some areas for future work. 

 ●  Run-time benchmarking for large N_frequencies. In this work we benchmark on 

 N_frequency = 201, which is what is provided in the beam. But we are curious to see if 

 our speed-ups over UVBeam are made better or worse for much large N_frequencies. 

 ●  Exploring larger Lmax could lead to better fits while marginal run-time cost. Future work 

 could explore increasing Lmax and evaluating tradeoffs. 

 ●  Exploring beam decomposition of perturbed beams and mutual coupling power patterns. 

 How much does this scatter power to different harmonic modes in the beam? Is there a 

 good low-dimensional spherical harmonic representation? 
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 Appendix A: Interpolation Profiling 

 Power Beam Interpolation for Case #1: Profiled on NRAO computers 

 Line #      Hits         Time  Per Hit   % Time  Line Contents 

 ============================================================== 

 1                                           def interp(xhat, l, m, theta, phi, lmax=25, mmax=25, even_m=False): 

 2         1        125.0    125.0      0.0      lms = list(zip(l, m)) 

 3         1        794.0    794.0      0.1      larr, marr = generate_lm(lmax=lmax, mmax=mmax, even_m=even_m) 

 4         1         50.0     50.0      0.0      coeff = np.ones_like(larr) 

 5         1         16.0     16.0      0.0      coeff[marr > 0] = 2.0 

 6         1         48.0     48.0      0.0      lmarr = list(zip(larr, marr)) 

 7         1     795281.0 795281.0     87.0      Y = Ylm(larr, marr, theta.reshape(-1, 1), phi.reshape(-1, 1)) 

 8         1       1030.0   1030.0      0.1      cut = [i for i in range(len(lms)) if lms[i]in lmarr] 

 9         1        401.0    401.0      0.0      xh = xhat[cut, :] * coeff[:, None] 

 10         1     116638.0 116638.0     12.8      beam_bf = Y @ xh 

 11         1          3.0      3.0      0.0      return beam_bf, larr, marr 

 We see that 87% of the run-time for the interpolation function is in calling the Ylm() function for 
 the specified number of l,m coefficients and theta, phi sky angles, meaning that the construction 
 of the Ylm is the main bottleneck. 

 E-Field Beam Interpolation for Case #1 

 Line #      Hits         Time  Per Hit   % Time  Line Contents 

 ============================================================== 

 1                                           def interp(xhat1_real, xhat1_imag, xhat2_real, xhat2_imag, l, m, theta, phi, lmax=35, mmax=35): 

 2         1        166.0    166.0      0.0      lms = list(zip(l, m)) 

 3         1       1343.0   1343.0      0.1      larr, marr = generate_lm(lmax=lmax, mmax=mmax) 

 4         1        102.0    102.0      0.0      coeff = np.ones_like(larr)[:, None] * 2 

 5         1         66.0     66.0      0.0      lmarr = list(zip(larr, marr)) 

 6         1    1213540.0 1213540.0     65.1      Y = Ylm(larr, marr, theta.reshape(-1, 1), phi.reshape(-1, 1)) 

 7         1      24527.0  24527.0      1.3      Y[:, marr==0] *= np.exp(1j * phi.reshape(-1, 1)) 

 8         1       2492.0   2492.0      0.1      cut = [i for i in range(len(lms)) if lms[i] in lmarr] 

 9         1        295.0    295.0      0.0      xh1_real = xhat1_real[cut, :] * coeff 

 10         1        209.0    209.0      0.0      xh1_imag = xhat1_imag[cut, :] * coeff 

 11         1        206.0    206.0      0.0      xh2_real = xhat2_real[cut, :] * coeff 

 12         1        206.0    206.0      0.0      xh2_imag = xhat2_imag[cut, :] * coeff 

 13         1     144149.0 144149.0      7.7      beam1_real_bf = (Y @ (xh1_real)) 

 14         1     109340.0 109340.0      5.9      beam1_imag_bf = (Y @ (xh1_imag)) 

 15         1     110183.0 110183.0      5.9      beam2_real_bf = (Y @ (xh2_real)) 
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 16         1     109918.0 109918.0      5.9      beam2_imag_bf = (Y @ (xh2_imag)) 

 17         1     147001.0 147001.0      7.9      power_bf = beam1_real_bf**2 + beam1_imag_bf**2 + beam2_real_bf**2 + 
 beam2_imag_bf**2 

 18         1          3.0      3.0      0.0      return beam1_real_bf, beam1_imag_bf, beam2_real_bf, beam2_imag_bf, power_bf, larr, 
 marr 

 For the E-field beam interpolation, calling the Ylm() function is still the bottleneck (65% of 
 run-time), but is not as severe due to the fact that we need to forward transform 4 separate 
 beams now. 

 Figure 10 |  The function we wrote to evaluate the  spherical harmonics. 
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