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1 INTRODUCTION

This memo presents a comprehensive overview and deriva-
tion of the power spectrum normalisation, along with a form
for the thermal noise power. Its purpose is to bring together
the various derivations to date, eg. Parsons et al. (2012),
Parsons et al. (2014, hereafter P14a), Parsons (2017, here-
after P17) and Kolopanis et al. (2019), and clarify their var-
ious points of difference. To this end, we include a table of
assumptions, Table 1, to aide in understanding which as-
sumptions are made at which point of the derivation, and
to serve as a reference for branching off derivations which
break these assumptions.

For clarity of notation, we will use over-tilde throughout
to represent Fourier-space functions (i.e. in uv- or k-space).
Angle-brackets 〈〉 will represent ensemble averages (i.e. the
expectation over an infinite number of realisations of the
indicated process). The Var and Cov operators will similarly
refer to theoretical ensemble quantities, where applicable.
Vector-valued quantities will be formatted as upright-bold
characters, eg. r. Matrices will be formatted as upper-case
vectors, eg. C.

2 POWER SPECTRUM NORMALISATION

2.1 Delay Transform

Under the flat-sky and delay approximations, a measured
Fourier-space visibility (of a single baseline) may be written

Ṽ(u, v, η) =
∫

dldmdνA(l,m, ν)φ(ν)I(l,m, ν)e−2πi(ul+vm+ην),

(1)

where (l,m) are the sin-angle co-ordinates of the sky phased
to a given centre, A is the beam-response pattern of the
antennas in the baseline, φ is an arbitrary taper function
applied by the analyst, and I is the specific intensity of ra-
diation in a given direction.

The specific intensity of the sky is typically measured
in Jy per steradian, such that the Fourier visibility Ṽ has
units of JyHz. The cosmological power spectrum is typically
expressed in terms of brightness temperature (in units of

mK), which is related to specific intensity by

Tb = 10−26 c2

2kBν2 · Iν ·
103mK

K
· K

Jy sr−1

=
κ

ν2 Iν

[
mK

Jy sr−1

]
. (2)

The “telescope co-ordinates” have a one-to-one corre-
spondence to cosmological co-ordinates, so that the mea-
surement equation can be written

Ṽ(k) = 1
κ

∫
d2r⊥dr | |

dl
dr⊥
(l, ν) dl

dr⊥
(m, ν) dν

dr | |
(ν)

× ν2(r | |)Tb(r⊥, r | |)A(r⊥, r | |)φ(r | |)e−ir·k, (3)

where k is the Fourier-dual of r1, and we note that Ṽ retains
its original units of JyHz. It is common to approximate the
conversion functions between angular/frequency and cosmo-
logical distance co-ordinates as linear transformations, so
that their derivative is a constant. We note that this is only
a good approximation when both the beam and bandwidth
are “small enough” such that the true relations (given be-
low) are approximately constant over the integration range.
For now, we will make the first of these assumptions – that
the beam is compact enough such that the interval dl cor-
responds to a roughly constant dr⊥ over the integrated sky
– and we will reserve the latter approximation for a later
point.

Regardless, these conversion factors are often expressed
as X and Y , and are given (at zenith) as follows:

X(ν) ≡ dr⊥
dl
= DM (ν)

[
cMpc

rad

]
, (4)

Y (ν) ≡
dr | |
dν
=

c(1 + zν)
H(zν)ν

[
cMpc

Hz

]
, (5)

where DM is the transverse comoving distance (Hogg 1999),
H(z) is the Hubble parameter as a function of redshift and
zν is the redshift corresponding to a frequency ν of 21 cm
radiation, zν = ν21/ν − 1.

Thus, we may finally write the measurement equation
in terms of cosmological co-ordinates as

Ṽ(k) = 1
κ

∫
d3r ν2 Tb(r)Aν(r⊥)φν

X2
νYν

e−ir·k (6)

=
1
κ

∫
d3k′

(2π)3
T̃b(k′)Υ̃(k − k′), (7)

1 i.e. the standard cosmological wave-number, incorporating an

extra factor 2π as compared to the conversion of (u, v, η) to r.
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Assumption Relevant Eqs.

Flat-sky approximation All
Delay Approximation All

Fourier-space beam, Ã(k), much narrower than P(k) 17 –
dx⊥
dl (l, ν) ≈

dx⊥
dl (0, ν) ≡ X(ν) for all ν in effective bandwidth, and all l in beam area. 6 –

Data composed only of 21 cm signal and thermal noise 11 –

Homogeneous, isotropic signal over the bandwidth 14 –

X, Y , ν4 and Ωpp(ν) are much broader in ν than φ2 22, 38, 39, 43

Gaussian 21 cm field 30 –

2 |k | outside window function regime 33 –

Table 1. Assumptions made in deriving normalisation and covariance.

with

Υ(r) = ν2 Aν(r⊥)φν
X2
νYν

. (8)

Note that it is understood that ν as it appears in these
equations is a direct conversion from the third component of
r, i.e. r | | . The second equation here is equivalent to the first,
but expressed via the convolution theorem in Fourier-space.
We use the usual cosmological convention, i.e.

T̃(k) =
∫
V

d3x T(x)e−ik·x, (9)

T(x) =
∫

d3k
(2π)3

T(k)eik·x (10)

where V is the integration volume (in our case, its precise
value is unimportant as it will be canceled in the final anal-
ysis).

2.2 Delay Spectrum

We wish to derive an unbiased estimator of the 21 cm power
spectrum at a single mode k, in the sense that the expecta-
tion value of the estimate should converge to the true cos-
mological value. This is not possible without specifying some
statistical form for the various factors involved, in particular
the brightness temperature field, Tb.

For the remaining calculations, we assume that the tem-
perature field is given by a sum of signal and thermal noise.
This neglects foregrounds, as well as other potential system-
atic errors (such as calibration errors) which may be both
non-negligible in amplitude in comparison to the 21 cm sig-
nal and have non-zero mean. We justify this simplification
on the grounds that we are interested in a foreground avoid-
ance scheme, in which we only retain modes in which the
expected signal dominates the foregrounds. Thus we explic-
itly have

Tb(r) = T21(r) + TN (r)
T̃b(k) = T̃21(k) + T̃N (k). (11)

where the second equality holds due to the linear nature of
the components. In particular, two independent and redun-
dant visibilities (i.e. measuring the same k) will have the
same value for T̃21, but different (and independent) values
for T̃N .

An unbiased power spectrum estimate is then simple to
obtain by using the cross-product of independent and re-
dundant visibilities. To be clear, by unbiased we mean that

the expectation of the estimate corresponds exactly to the
cosmological power spectrum. To begin, we write the expec-
tation of the cross-product of independent visibilities:〈
ṼiṼ∗j (k)

〉
=

1
κ2

∫
d3k′

(2π)3
d3k′′

(2π)3

〈
T̃ i
b
(k′)T̃∗j

b
(k′′)

〉
Υ̃(k − k′)Υ̃(k − k′′).

(12)

Expanding the temperature field in terms of its components,
we have〈
T̃ ′b,iT̃

′′∗
b, j

〉
=

〈
T̃ ′21T̃ ′′∗21

〉
+

〈
T̃ ′21T̃ ′′∗N, j

〉
+

〈
T̃ ′′∗21 T̃N,i

〉
+

〈
T̃ ′′N,iT̃

′′∗
N, j

〉
=

〈
T̃ ′21T̃ ′′∗21

〉
, (13)

where the last three components are zero because the noise
terms are independent of both signal and each other, and
have mean zero. Now, the remaining term is precisely the
diagonal power spectrum. To see this, we have

〈 ˜T21T̃ ′∗21〉 =
∫

d3xd3x′〈T21(x)T21(x′)〉e−ik·x+ik
′x′

=

∫
d3xd3r〈T21(x)T21(x + r)〉e−ik·x+ik′(x+r)

=

∫
d3xd3rξ21(r)e−ikx+ik′(x+r)

= (2π)3δ(k − k′)
∫

d3rξ21(r)e−ik
′ ·r

= (2π)3δ(k − k′)P21(k). (14)

Here, on the third line we have used the definition ξ(r) ≡
〈T(x)T(x+ r)〉, which is often termed the “correlation” or “co-
variance” function, though we note that it is not strictly a
covariance as here defined, unless 〈T(x)〉 = 0. We note also
that the last equality follows from the equality

P(k) ≡
∫

d3r ξ(r)e−ik·r, (15)

which is only true if the field T is homogeneous (i.e. the
expectation of its mean is constant with x)2. In particular,
we note that this is not strictly true of the 21 cm field, whose
expected mean changes with frequency/redshift. This limits

2 This condition is equivalently expressed by the relation

ξ(r) = 〈T (x)T (x + r)〉 = 1
V

∫
d3x T (x)T (x + r).

That is, by the identification of ensemble average with spatial

average.
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the bandwidth that is able to be employed while maintaining
these derivations as appropriate.

Thus we have〈
ṼiṼ∗j (k)

〉
=

1
κ2

∫
d3k′P21(k′)Υ̃2(k − k′). (16)

It is typically now argued that the square of the con-
volution kernel, Υ, is much more compact than the power
spectrum, centered around zero. This allows us to evaluate
the power spectrum at k and remove it from the integral:〈
ṼiṼ∗j (k)

〉
=

P21(k)
κ2

∫
d3qΥ̃2(q), (17)

=
P21(k)
κ2

∫
d3rΥ2(r)

=
P21(k)
Φ

. (18)

with the second line following from Parseval’s theorem, and

Φ ≡ κ2∫
d3rΥ2(r)

[
mK2Mpc3

Jy2Hz2

]
, (19)

Thus we may construct an unbiased estimate of the cos-
mological power spectrum via

P̂21(k) = ΦṼiṼ∗j . (20)

Note the units here; the visibilities retain their native units
of JyHz, while the estimate of the power spectrum is in
cosmological co-ordinates, mK2Mpc−3.

The normalisation, Φ, is a direct generalisation of that
found in P17, and equivalent to that in Kolopanis et al.
(2019), and may be written in full as

Φ =

(
10−23 c2

2kB

)2 [∫
dν ν4Ωpp(ν)φ2(ν)

X2
νYν

]−1

, (21)

with Ωpp =
∫

d2l A(l). Under the approximation that φ is
significantly more peaked than all other functions of ν (and
that it peaks at ν), this reduces to the familiar

Φ ≈
(
10−23 c2

2kBν2

)2 X2
νYν

Ωpp(ν)Bpp
, (22)

3 COVARIANCE OF PS ESTIMATE

We turn now to estimating the uncertainty on an estimate
of the delay power spectrum, as defined in the previous sub-
section. P14a and previous derivations have evaluated this
variance by evaluating the power spectrum for visibilities
that include only thermal noise. However, this overlooks
a small but definite contribution to the total uncertainty
which arises from the cross-correlation of signal power with
the thermal noise power. We do not make this approxima-
tion in our derivation.

We derive the full covariance between k modes here,
though previous derivations in the literature have quite rea-
sonably focused on only the variance. We will also highlight
the variance after the initial derivation.

The covariance of the estimated power spectrum is

CP ≡ Cov
[
P̂(k), P̂(k′)

]
= Φ2Cov

[
ṼiṼ∗j , Ṽ

′
i Ṽ
′∗
j

]
. (23)

Given our choice of temperature components introduced in
Eq. 11 (i.e. a sum of a 21 cm and a thermal noise component)
and the linearity of the Fourier operator, we have

Ṽi = Ṽ21 + ṼN,i, (24)

with ṼN,i the noise visibility constructed from the coherent
average of n independent and redundant visibilities.

We then have

CP ≡ Φ
2Cov

[
ṼiṼ∗j , Ṽ

′
i Ṽ ′∗j

]
= Φ

2Cov
[��Ṽ21

��2 + Ṽ21Ṽ∗N, j + Ṽ∗21ṼN,i + ṼN,iṼ
∗
N, j,��Ṽ ′21

��2 + Ṽ ′∗21Ṽ ′N, j + Ṽ ′21Ṽ ′∗N,i + Ṽ ′∗N,iṼ
′

N, j

]
. (25)

Taking the sum of the covariance of all pairs, we can dispense
with any term which contains a single realisation of a noise
term, as its expectation is zero. We recall that

Cov [XY,ZW] = 〈XYZW〉 − 〈XY〉〈ZW〉, (26)

and write

CP

Φ2 =Cov
[
|Ṽ21 |2, |Ṽ′21 |

2
]
+ 2<

[
〈Ṽ21Ṽ′∗21〉〈ṼNṼ′∗N 〉

]
+ 〈ṼNṼ ′∗N 〉

2, (27)

where < denotes taking the real part of the argument.
The first term of this equation represents the intrinsic

cosmic covariance of the 21 cm power spectrum, the last is
the “noise power” covariance, and the middle term is a cross-
term which we expect to be non-negligible when the 21 cm
and noise power are equally matched. We now turn to derive
explicit forms for each of the three terms.

3.1 Cosmic Covariance

Let’s take the first term of Eq. 27:

Φ
2Cov

[
|Ṽ21 |2, |Ṽ′21 |

2
]
= Φ2〈|Ṽ21 |2 |Ṽ′21 |

2〉 − P21P′21. (28)

Here the last term follows directly from Eq. 17. Fully ex-
panding the first term, we obtain

〈|Ṽ21 |2 |Ṽ ′21 |
2〉 = 1

κ4

∫
d3x1d3x2d3x3d3r4Υ(x1)Υ(x2)Υ(x3)Υ(x4)

× 〈T1T2T3T4〉e−i[k1 ·(x1−x2)+k′ ·(x3−x4)].
(29)

To simplify this term, we will assume that the temperature
field is Gaussian – an approximation that we have not made
until this point. We note that the temperature field is def-
initely not Gaussian (Watkinson et al. 2018), nevertheless
we expect that the Gaussian approximation should serve
reasonably well in estimating the covariance of the power
spectrum. We then have, via Wick’s/Isserlis’ theorem

〈T1T2T3T4〉 = 〈T1T2〉〈T3T4〉 + 〈T1T3〉〈T2T4〉 + 〈T1T4〉〈T2T3〉. (30)

Using repeated applications of the convolution theorem and
the identity Eq. 15, along with the fact that P(−k) = P(k),
we find

〈|Ṽ21 |2 |Ṽ ′21 |
2〉 =P(k)P(k′)

κ4

[
κ4

Φ2 +

����∫ d3k′′

(2π)3
Υ̃(k − k′ − k′′)Υ̃(k′′)

����2
+

����∫ d3k′′

(2π)3
Υ̃(k + k′ − k′′)Υ̃(k′′)

����2] . (31)
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When considering the total covariance, the first of these
three terms cancels with the subtracted product of means.
Furthermore, we note that only one of the integral terms
will ever contribute for |k |, |k ′ | > 0, as one of them will have
its “peaked” function Υ̃ much closer to its peak over the in-
tegration range. For the purposes of simplicity, we consider
only correlations between k and k′ in the same octant, under
which only the second term remains (numerically, it is easy
enough to include both terms, though for opposing octants,
the results are perfectly symmetric). This leaves, for the full
covariance:

Φ
2Cov

[
|Ṽ21 |2, |Ṽ′21 |

2
]
≈ P(k)P(k′)

���∫ d3k′′
(2π)3 Υ̃(k − k′ − k′′)Υ̃(k′′)

���2��∫ d3xΥ2(x)
��2

(32)

The numerator here is sharply peaked at k = k′, which
means there is very little correlation between distant k-
modes.

When k = k′ we obtain a variance of

Φ
2Var(|Ṽ21 |2) ≈ P2

21(k), (33)

where the approximation is due to the initial assumption of
a Gaussian temperature field, and is valid for values of |k|
large enough that 2|k| is outside the peak of the window
function3.

3.2 Noise Covariance

We now turn to the contribution to the total covariance
which arises solely from the thermal noise (i.e. the last term
of Eq. 27). We note that the noise statistics properly belong
in visibility space – we take them to be independent per base-
line and per frequency4, and are assumed to be zero-mean
complex Gaussian variables. While the noise fluctuations are
natively in units of Jy, their rms variance, VN,rms is typically
expressed via a combination of equivalent brightness tem-
peratures,

Tsys = Tsky + Trcv

= VN,rms
κ

ν2Ωp(ν)

√
∆νtintNpol, (34)

with ∆ν the bandwidth of a channel, t the integration time of
the visibility and Ωp(ν) the integral of the beam over the sky.
The Ωp enters in order to make the correct unit conversion
between Jy and mK, and is a definition: so long as the sys-
tem temperature is measured by converting the inherent Jy
units using this factor, then we must use this same factor to
convert back to Jy. The factor ∆νtintNpol enters to maintain
the naive association of the intrinsic sky and receiver tem-
peratures to the “system temperature” which must account
for the fact that the noise is reduced by the extra indepen-
dent correlator samples from extra bandwidth, integration
time and polarizations.

In the cosmological power spectrum case we were able to

3 For smaller values of |k |, the variance rises to twice the quoted
value.
4 Note that this is an approximation; baselines that are physically
close together, and frequencies that are close together may exhibit
some correlations in practice.

roughly ignore the fact that the frequency Fourier transform
is in practice discrete, because the actual intensity value for
each bin is considered to be the integral over the bin. The
approximation that results from this lack of discretization
is very much of secondary concern, and the discrete values
can be read off from the differential continuous function.
However, in the case of the noise, this is not possible – the
value of the noise within a bin is not the integral of infinites-
imally small sub-bins. Thus, we treat the fourier-transform
explicitly as discrete:

〈ṼN (u, η)Ṽ∗N (u, η
′)〉 = (∆ν)2

N f∑
j,k

φ jφk 〈VN (u, νj )V∗N (u, ν
′
k )〉e

−2πi(ηνj−η′νk )

=
∆ν

κ2tintNpol

N f∑
j

φ2(νj )T2
sysΩ

2
pν

4e−2πiνj (η−η′).

(35)

To simplify the expression, we are now free to approximate
the discrete sum as an integral, and write

〈ṼN (u, η)Ṽ∗N (u, η
′)〉 = 1

κ2tintNpol

∫
dν φ2

νT2
sys(ν)ν4

Ω
2
pe−2πiν(η−η′).

(36)

The covariance in detail is thus written

CP =

[
Φ

κ2tintNpol

∫
dν φ2

νT2
sys(ν)ν4

Ω
2
pe−2πiν(η−η′)

]2

=

[
1

tintNpol

∫
dν φ2

νT2
sys(ν)ν4Ω2

pe−2πiν(η−η′)∫
dν ν4X−2

ν Y−1
ν Ωpp(ν)φ2

ν

]2

. (37)

If we are to make the approximation, as we did in Eq.
22, that φ is a much more peaked function of ν than any
other factor in the integral, then we may extract them to
yield

CP ≈
[

T2
sysΩ

2
pX2

νYν

Ω2
pp(ν)B2

pptintNpol

∫
dν φ2

νe−2πiν(η−η′)
]2

, (38)

for which the variance is

Var(P) ≈
[

T2
sysΩ

2
pX2

νYν
Ωpp(ν)tintNpol

]2

. (39)

Note that this expression differs from eg. P17, as it has no
dependence on the bandwidth integral whatsoever. This can
be thought of as saying that changing the taper function can-
not change the signal-to-noise, as the same taper is applied
to both signal and noise.

3.3 Signal-Noise Cross Covariance

For the cross-term, we require only to calculate

〈Ṽ21Ṽ ′∗21〉 =
1
κ2

∫
d3x1d3x2Υ(x1)Υ(x2)〈T1T2〉e−i[k·x1−k′ ·x2)]

=
1
κ2

∫
d3x1d3rΥ(x1)Υ(x1 + r)ξ(r)e−i[x1 ·(k−k′)−k′ ·r]

=
1
κ2

∫
d3x1d3k′′Υ(x1)Υ̃(k′ − k′′)P(k′′)e+ik′′ ·x1 e−ix1 ·k

=
1
κ2

∫
d3k′′Υ̃(k − k′′)Υ̃(k′ − k′′)P(k′′). (40)

MNRAS 000, 1–5 (2019)
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Again, we find that the κ2 factor cancels with the normali-
sation, Φ. Apart from this, this covariance expression is not
easily reduced further.

However, for the variance, we find

Φ〈Ṽ21Ṽ∗21〉 = P(k). (41)

3.4 Total Variance

Bringing together the results of the previous three subsec-
tions, we write down the total variance of the estimated
power:

Var(P̂) =
[
P21(k) +

1
tintNpol

∫
dν φ2

νT2
sys(ν)ν4Ω2

pe−2πiν(η−η′)∫
dν ν4X−2

ν Y−1
ν Ωpp(ν)φ2

ν

]2

.

(42)

Under the assumption that φ is sharply peaked, this
reduces to

Var(P̂) ≈
[
P21(k) +

T2
sysΩ

2
pX2

νYν
Ωpp(ν)tintNpol

]2

. (43)
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