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1 Introduction

We are currently in a period of rapid advancement in Fast Radio Burst (FRB) science, with telescopes such
as CHIME, ASKAP and FAST discovering thousands of new FRBs in the past few years. However, FRB
science at the low frequencies HERA probes has only just started to develop, with LOFAR’s recent detection
FRBs (Pleunis et al., 2021a) from the known repeating source FRB 20180916B marking the very first FRB
detection in the frequency range accessible to HERA. This gives rise to an exciting question: could HERA
detect FRBs as well?

Detecting FRBs using HERA presents a unique challenge, as it is optimised for cosmological power
spectrum studies rather than transient detection. HERA’s long integration time relative to the pulse width
of most FRBs makes detecting them using HERA more challenging. However, HERA’s large size may
overcome this suboptimal integration time to potentially enable a detection or at least useful upper limits
on FBR rates at low frequency. Additionally, surveys conducted by telescopes in the Southern Sky, such
as the Parkes Telescope (Yang et al., 2021) and ASKAP (Shannon et al., 2018) have found numerous FRB
sources in the patch of sky accessible to HERA, which could be potential targets for us. In this memo, we
simulate HERA observations of FRBs, develop methods to compute their signal-to-noise ratios (SNR) and
in doing so forecast what sort of FRBs HERA could potentially detect.

2 FRB Modeling and Parameterization

For simplicity, our simulations assume that the burst follows a Gaussian profile in time, though we note that
recent studies (Pleunis et al., 2021b) in the field have found bursts with varying morphologies. The Gaussian
model is given by:

I(t, ν) =
I0

σ
√
2π

exp

[
− (t− tFRB(ν))

2

2σ2

]
. (1)

Here tFRB(ν) refers to the time at which the component of the burst at frequency ν arrives at the detector,
and where σ = FWHM/(2

√
2 ln 2), where FWHM is the full-width at half-maximum of the Gaussian time

profile. Also for simplicity, we assume that I0 is constant with frequency, which is probably too optimistic,
in the sense that no observed LOFAR FRBs span the full ∼200MHz of HERA’s band.

The arrival time of the burst is a function of ν, due to dispersion along the line of sight due to passage
through an ionised medium. The equation for the frequency dependent arrival time follows from the definition
of the dispersion measure:

tFRB(ν) = tref + kDMDM
(
v−2 − v−2

ref

)
(2)

Here, tref is the reference time at which the burst peaks at frequency νref . For the purposes of this work,
we adopt 150 MHz as the reference frequency. The amount of dispersion is controlled by two constants: the
dispersion measure (DM) of the burst, and kDM , a measure of the free electron density along the line of
sight, the value of which we fix to 4.1488× 103 MHz2 cm3 pc−1 s.
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Figure 1: Simulated HERA visibility of an FRB with DM=300, as seen by a 51m E, 37m S baseline.The
panel on the left shows the real part of the FRB visibility, while the panel on the right shows the imaginary
component. The phasing observed in both panels is a consequence of the fact that the FRB moves across
the sky over the ∼9 minutes it takes to disperse across the 50-250 MHz frequency range.

When simulating bursts, we start off with a simulation time resolution of 0.01 seconds in order to resolve
the burst profile. To compute visibility sums and differences, we average down to 0.1 s even and odd sub-
integrations, from which we then compute sums and differences at HERA’s 9.6 s cadence.

3 Visibility Simulation and SNR Calculation

The visibility we would expect for a single point source like an FRB as observed by a single baseline is

V FRB
ij (t, ν) = I(t, ν)B(r̂(t)) exp

[
−2πiν

c
bij · r̂(t)

]
(3)

where I(t, v) is the FRB flux in frequency v at time t, r̂(t) is the unit vector pointed toward the FRB at time
t, B(r̂(t)) is the beam power at the FRB position at time t, and bij the baseline vector between antennae i
and j. Figure 1 shows the real and imaginary components of a simulated FRB visibility.

We use the Fagnoni Vivaldi beam model.1 When computing visibilities using this beam, we take into
account the movement of the FRB across the sky over the course of the observing window–calculating the
altitude and azimuth at each measurement time. We then use this time dependent position of the FRB to
calculate the beam power at a given time and frequency, which is incorporated into the visibilities.

To calculate the observability of the FRB, we need a model for noise in a given observation given a time-
and frequency-dependent system temperature. To calculate Tsys we use a constant receiver temperature of
100K:

Tsys(t, ν) = Tsky(t, ν) + 100K. (4)

Our sky temperature is derived from simulated autocorrelations using RIMEz, which includes both diffuse
emission and point sources.2 We convert autocorrelations to Tsky via the following expression.

Tsky(t, ν) =
∣∣∣V foregrounds

ii (ν, t)
∣∣∣ ( 10−26 W

Jym2 Hz

)
c2

2kBν2ωp(ν)
. (5)

1Found at /lustre/aoc/projects/hera/H4C/beams/NF_HERA_Vivaldi_efield_beam_healpix.fits
2/lustre/aoc/projects/hera/zmartino/hera_calib_model/H4C_1/abscal_files_unique_baselines
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Figure 2: Noise levels estimated from autocorrelations simulated using RIMEz. Because HERA is sky noise
dominated for most frequencies and LSTs, the noise peaks when the galaxy is overhead at ∼18 hrs. The
process for estimating these noise levels is outlined in Equations 4-6.

Using Tsys and assuming that all antennas have the same noise level, we can infer the thermal noise on any
given visibility measurement as

σij(ν) =

(
Tsys(ν, t)√
tint∆ν

)(
Jym2 Hz

10−26 W

)
2kBν

2ωp(ν)

c2
. (6)

We show that thermal noise level in Figure 2 Thus, the total SNR for a given visibility to a single FRB can
be calculated by summing over all times and frequencies in quadrature:

SNRij =

√√√√2
∑
ν

∑
t

∣∣∣∣Vij(t, ν)

σij(ν, t)

∣∣∣∣2 (7)

Here the factor of 2 inside the square root comes from the fact that noise is a 2D-Gaussian in the complex
plane, but the signal of interest is fundamentally a real quantity that is the same in every visibility, up to a
baseline-dependent phase factor. Thus, only part of the noise contributes to the denominator in the SNR.3

Note that most Vij in this sum are zero or numerically very close to zero; most times and frequencies do not
have appreciable FRB flux.

Using the single-visibility SNR defined above, we compute the signal-to-noise ratio for the whole array
for simulated FRBs, SNRarray, as:

SNRarray =

√∑
ℓ

(SNRij)
2
nℓ (8)

where ℓ is an index that runs over all unique baseline groups and nℓ is the number of total baselines in each
redundant group.

3This assumes that after the FRB is detected, it can be sufficiently localized to coherently phase up all visibilities together
before averaging. Hence, while we might consider searching for FRBs in |Vij |, that quantity can be biased in the low-SNR
regime. Thus, we will likely need to follow up candidates detected in this way by examining the full, complex visibilities.
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Figure 3: Inverse variance weighted average of the |SNR| for a given FRB with DM=300 and N=11, per
channel and per integration, but summed over all redundant baselines. Before carrying out this average,
we exploited the redundancy of baselines to drive down the noise by a factor dependent on the number of
redundant baselines sharing the same vector. As can be observed, the SNR decreases as we move to lower
frequencies due to the corresponding increase in the noise level. However, it is important to note that this
effect may not always hold exactly, since the movement of the FRB across the sky can lead to SNR peaking
at lower frequencies that arrival time corresponds to near-zenith passage, especially for high-DM FRBs.

4 Statistical simulation pipeline

We can now simulate a series of 1 Jy FRBs distributed evenly on the celestial sphere and in JD. The JD is
picked uniformly randomly in time. The random draws on the sphere are done as follows:

α = 2πu, δ = cos−1(2v − 1) (9)

In this, u, v are random variables distributed evenly on [0, 1] and θ, ϕ are spherical angular coordinates. We
then compute the horizontal coordinates (with respect to HERA) for each such FRB, for the entire time
the FRB disperses from 250 MHz to 50 MHz. Because HERA’s beam falls off steeply away from zenith,
we adopt an altitude cutoff of 1.2 radians = 68.7◦ for the maximum altitude the FRB reaches during its
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dispersion. For FRBs which do not reach at least this altitude over their time in HERA’s frequency range,
we assign an SNR of 0 and do not simulate any visbilities for the sake of computational expediency.

For FRBs with maximum altitudes higher than this cutoff, we simulate full HERA array visibilities and
use these to estimate the predicted SNRs. For such FRBs, we use the times at which the source passes
the altitude cutoff to define our observational window. We then simulate sums and diffs for each redundant
baseline in the array using the method outlined in section 3. In Figure 4, we plot the results of simulating
a population of FRBs using this process. Owing to the fact that the location and arrival times of bursts in
the simulated population are randomly drawn, the vast majority of FRBs on the sky will not be observable
by HERA. However, the small fraction that land close to zenith will have high SNR and are thus potentially
detectable using HERA.
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Figure 4: A population of 105 1 Jy FRBs with DM=300 and FWHM=0.1s with randomly drawn burst
times and locations on the celestial sphere. Each point is a member of the sub-sample of FRBs that pass
our maximum altitude cutoff (as these are the only ones for which we calculate SNRs) plotted with respect
to the LST at which its 150MHz component arrives (x-axis), the maximum altitude their source reaches
during the burst (y-axis), and its SNR (colour). As can be seen, the number of FRBs that reach a given
altitude decreases as we approach zenith, and the SNR conversely increases. In addition, we observe that
the population of bursts close to LST=18 hrs have significantly lower SNRs than other times, an effect we
attribute to high sky temperature from the galaxy.

We conducted a parameter exploration of the following four parameters in order to assess the impact
on burst SNRs for HERA: DM, FWHM[ms], frequency range[MHz], and the size of the array, which is
parametrised by the hexagonal N. In Table 1, we list the values (with the fiducial choice in bold) we test for
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each of these parameters. In our simulations, all parameters were fixed at the fiducial value except the one
being varied.

DM FWHM [ms] Hexagonal N (Number of Antennae) Frequency Range [MHz]

100 10 5 (56) 50-250
300 100 7 (120) 50-100
900 1000 9 (208) 100-150
2700 10000 11 (320) 150-200

200-250
110-190

Table 1: Parameter values tested in our simulations. Bolded entries indicate fiducial values. In each column,
we simulated all values while keeping all other columns fixed at the fiducial value.

5 Results

In this section, we show the results of the statistical simulation methodology outlined in section 4. With so
few detected FRBs at HERA frequencies, it is difficult to directly predict the number of FRBs that HERA
might see without assuming a flux-dependent rate of FRBs. Instead, we choose to simply calculate the
fraction of 1 Jy FRBs observable with at least a given SNR. Since SNR scales linearly with flux, we can thus
interpret our results as a function of SNR/Jy. In general, dimmer FRBs will only be detectable at some
SNR threshold near the center of the primary beam while brighter FRBs will be detectable over a larger
solid angle and will thus be detected more often.

We begin by examining the impact that the size of the array—quantified by the hexagonal array number
N—has on FRB detectability. As can be seen in Figure 5, the detection prospects improve as N increases.
Assuming a fiducial 800 FRBs per sky per day (or 400 night−1sky−1 assuming 12 hours of observing per
night; (CHIME/FRB Collaboration et al., 2021)) with N = 11, we would expect to observe around 1 FRB
per night with an SNR/Jy > 5. This expectation drops to 0.4 and 0.08 for N=7 and N=5 respectively.

Figure 6 shows results analogous to those shown in Figure 5 but for populations of FRBs differing in pulse
FWHMs rather than N. As expected, FRB detectability rises strongly with increasing FWHM because the
burst duration gets more comprable to the 9.6 s integration time. For the fiducial case of FWHM=100ms,
we once again find a 0.3% detection rate for 5.0 SNR/Jy FRBs. This number rises to ∼1% and ∼2% for
FWHM=1000ms and 10000ms respectively. In terms of the actual number of detections per night, we
expect that full HERA may be able to detect 2, 8, and 16 FRBs per night at the 5.0 SNR/Jy level for
the FWHM=100, 1000, and 10000ms cases respectively. Conversely, detection prospects for a 10ms are
bleak: we expect to detect virtually no FRBs with FWHM=10ms (a timescale typical of higher frequency
detections of FRBs) with SNR/Jy > 2.5.

Figure 7 shows the results for when the observing frequency range is varied. This is meant to help assess
the possibility that the FRB is more narrow-band than our observations, as was often the case in Pleunis
et al. (2021a). As we would expect, the widest range (50-250 MHz) has the highest detectability, as SNR
is additive in quadrature. Detectability decreases as we shift to lower frequency ranges, as evidenced by
the steep drop-offs in the 50-100MHz and 100-150MHz curves as SNR/Jy increases. This is because of the
higher noise at low frequencies (Figure 2).

Finally, we show the results of varying the bursts’ DM in Figure 8. Most notable here is the observation
that DM does not seem to significantly impact FRB detectability. Though the values we test span a wide
range (DM=100,300,900, and 2700) the detection curves for each are very similar. On a given day, these
curves imply that irrespective of DM, HERA could detect 0.3% of FRBs anywhere on the sky with a SNR/Jy
of at least 5.0. As before, if we assume 12 hours of observation per day and 800 1 Jy FRBs per sky per day
(i.e. 400 per night), this translates to HERA detecting 1 FRB per night at the 5σ threshold.

Owing to the higher noise at lower frequencies, the dominant contribution to the SNR of an FRB is from
the higher frequency component. However, the apparent movement of the source on the sky is relatively
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Figure 5: Detection statistics for four populations of simulated FRBs, in which the varied parameter is the
array size, which itself is parametrised using hexagonal N. We test four values for N : 5,7, 9, 11 (full HERA),
corresponding to 56, 120, 208, and 320 antennae respectively. Points on the curves for the three populations
can be interpreted as follows: the y-coordinate is the fraction of FRBs anywhere on the sky observable
with an SNR/Jy greater than the x-coordinate. The second y-axis shows these fractions converted into an
expectation for the number of FRBs observed above a given SNR/Jy threshold per day using an occurrence
rate of 400 FRB night−1sky−1. As might be expected, detectability increases alongside N. These detection
curves imply that for N=11, we would expect to observe around 1 FRB day−1 with an SNR/Jy>5. This
expectation drops to 0.4 and 0.08 for N=7 and N=5 respectively. Even higher SNRs/Jy occur more rarely
because they require for the FRB to be located very near to the peak of the primary beam.

small during the arrival time range for the higher frequency components of the burst, owing to the nature
of the dispersion relation. However, there are a few additional effects that impact the SNR. Low DM FRBs
that fall into the primary beam should spend a higher fraction of time in the primary beam owing to their
lower dispersion time. On the other hand, high DM FRBs are more likely to have at least some part of
their burst’s spectrum fall in the primary beam. This effect can be seen in Figure 9, in which each panel
is analogous to Figure 4 but for populations of FRBs divided based on their DM. In the DM=100 case, we
observe fewer FRBs that have their max altitude very near zenith. However, the SNR/Jy for this sample is
very high. This contrasts with the trends seen in the DM=2700 population, within which a larger proportion
of FRBs reach zenith, an effect largely balanced out by the lower average SNR/Jy of this sample.

6 Conclusion and Next Steps

We have performed a preliminary forecasting of HERA’s ability to detect FRBs without a dedicated FRB
detection system with high temporal resolution. Our results indicate that full HERA should be able to see
on the order of 1 FRB per day with SNR/Jy > 5. Though the advent of full HERA will significantly improve
our expected capability to detect such FRBs, our work indicates that it is possible that there may exist some
undetected FRBs lurking in already existing HERA data. Motivated by this, we aim to search for FRBs in
already existing archival data and develop the infrastructure to perform such searches in HERA data yet to
come.

A unique aspect of HERA that may aid this effort is the phasing pattern an FRB should show in HERA
diffs (Figure 10); a consequence of the frequency-dependent arrival time of the FRB. We hope to exploit this

7



0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
SNR/Jy

10 5

10 4

10 3

10 2

Fr
ac

tio
n 

ob
se

rv
ed

10ms
100ms
1000ms
10000ms

10 2

10 1

100

101

Nu
m

be
r o

f F
RB

s p
er

 d
ay

 (a
ss

um
in

g 
40

0 
/s

ky
/n

ig
ht

)

Figure 6: Detection statistics analogous to those shown in Figure 5, but with the FWHM of the burst
being the parameter varied. We test four values for the FWHM: 10ms, 100ms, 1000ms, and 10000ms. As
illustrated in the plot, virtually none of the simulated FRBs with a FWHM of 10ms exceed a SNR/Jy of 2.5.
On the other hand, the number detected at SNR/Jy=20 (assuming the 400 FRB night−1sky−1 occurrence
rate) rises to 5 and 10 for the 100ms and 1000ms pulses respectively.
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Figure 7: Detection statistics analogous to those shown in Figure 5, but here we focus on the effects of varying
the frequency window being observed. Due to the fact that the noise level generally rises with decreasing
frequency (Figure 2) while our FRB model has a frequency-independent flux, we see that the low frequency
windows have lower SNRs. Of particular interest here is the 110-190 MHz window, which corresponds to
the frequency range in archival data from HERA Phase I (Abdurashidova et al., 2022).
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Figure 8: Detection statistics for four populations of simulated FRBs with differing dispersion measures:
100, 300, 900, 2700. These detection curves imply that the DM of an FRB source does not seem to strongly
impact its detectability with HERA, an effect that persists over the wide range of DMs from 100 to 2700.

distinctive pattern for the purposes of FRB detection—perhaps by training a machine learning algorithm to
detect it—inspired by success in recent studies (Zhang et al., 2018).
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Figure 9: SNR/Jy statistics for populations of simulated FRBs plotted with respect to their central LST
and the source’s max altitude during the duration of the burst, with SNR shown by the colour. Here, each
panel is analogous to Figure 4, with the panels differing in the DM of the FRB population displayed. As
DM increases, we observe two competing effects. The number of bursts reaching a given maximum altitude
increases with DM, as allowed by the longer dispersion time. Conversely, the average SNR of bursts with a
given max altitude decreases with increasing DM, as the long dispersion time means that these bursts spend
a longer portion of time deeper in the beam, which drives down SNR. The competing nature of these effects
may be responsible for how the detectability of an FRB does not strongly depend on its DM, as observed in
Figure 8.
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Figure 10: Sums and Diffs for a unit flux FRB with DM=300, N=11, and FHWM=100ms, for the same
51m E, 38m S baseline as in Figure 1. Of particular interest here is the interweaving pattern that can
be seen in the diffs (right panel). This occurs because the arrival time of the FRB shifts back and forth
between the even and odd interleaved 100ms sub-integrations as it disperses as a function of frequency. This
characteristic signature may prove a smoking gun in burst detection efforts.
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