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Abstract

Robust outlier rejection is required for the reduction of radio interferometric data. Following the
Hydrogen Epoch of Reionization Array (HERA) analysis pipeline, visibilities across Julian dates
(JDs) are aligned in Local Sidereal Time (LST), rephased and placed into bins of 21.4 s cadence.
At this stage, before any averaging is performed, a round of outlier detection that uses median
absolute deviation (MAD)-clipping is conducted. We present an improved outlier rejection routine
that considers robust Mahalanobis distances calculated with Minimum Covariance Determinant
(MCD) location and covariance estimates. The flagging capabilities of these two methods are
compared and preliminary averaged visibility and power spectrum (PS) results are shown.

1 Introduction

In the HERA LST-binning pipeline, a further round of outlier rejection is performed before the fully
calibrated visibilities are averaged across JDs. This is to ensure that any missed radio-frequency
interference (RFI) and/or other problems with the data that do not repeat night-to-night at the same
LST are flagged.

In each aggregated time bin, MAD-clipping is used to reject samples for every frequency/time/baseline
slice that has a modified Z-score |Zmod

i | > 5, as defined below:

Zmod
i =

xi −med(x)

σmad (1)

σmad = 1.482×med
∣∣x−med(x)

∣∣ (2)

where σmad is the MAD, a robust measure of variability that isn’t skewed by outliers. The factor of
1.482 in Eq. (2) is a consistency correction that is required to reproduce the standard deviation in the
case of white Gaussian noise.

This MAD-clipping is performed on the Re and Im components of the visibilities separately, and data
points are flagged if either component is clipped. Through this method, it is implied that the location
of the visibility distribution is given by the marginal median. As discussed in [1], despite having a high
breakdown value of 1/2, the marginal median does not necessarily represent the central tendency of
the distribution as it is not affine equivariant: for a location estimator Λ to be affine equivariant, it
must transform properly under rotation of the data, as well as changes in location and scale. That is
to say, for a p-by-p nonsingular matrix A and vector b with length p:

Λ(X1A + b, . . . , XnA + b) = Λ(X1, . . . , Xn)A + b (3)
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where X1, . . . , Xn is a sample from a p-variate distribution and each Xi is a vector of length p.

Similarly, Zmod
Re and Zmod

Im only represent the spread of the data along the Re and Im axes, resulting
in a rectangular boundary that does not account for the covariance of the visibility distribution.

In this memorandum, we present another clipping method that uses robust Mahalanobis distances,
which overcomes some of the shortfalls of MAD-clipping. The aim is not only to present a theoretically
better method of outlier rejection, but to also potentially address issues in the results that may be due
to low-level RFI that has not been picked up by the current pipeline (cf. the Band 2 Field 2 results
in [2]). This work is separate but concurrent to the robust location estimates for LST-binning and
averaging that has been presented in [1].

2 Outlier detection with robust Mahalanobis distances

The Mahalanobis distance [3] is a multivariate distance metric that measures the distance between a
point and a distribution. It is given by

MD(xi) =
(

(xi − µ̂)Σ̂−1(xi − µ̂)ᵀ
)1/2

(4)

where µ̂ is the sample multivariate mean and Σ̂ is the sample covariance matrix. Unlike Euclidean
distances, it accounts for any correlation between variables. It is commonly used to find outliers in
multivariate sets.

Naturally, the mean and covariance will be heavily influenced by the presence of outliers; obtaining
good robust estimators of µ̂ and Σ̂ are necessary to measure the outlyingness of data points and to
have a proper distance-based outlier detection procedure. Therefore, we modify Eq. (4) to get robust
Mahalanobis distances:

RMD(xi) =
(

(xi − µ̂r)Σ̂−1r (xi − µ̂r)ᵀ
)1/2

(5)

where µ̂ and Σ̂ have been replaced with µ̂r and Σ̂r, which are robust estimators of centrality and
covariance matrix.

In practice, the most frequently used covariance estimator is the MCD estimator [4], which is based on
the computation of the ellipsoid with the smallest volume or with the smallest covariance determinant
that would encompass at least half of the data points.

2.1 Minimum Covariance Determinant estimator

This MCD estimator is a high-breakdown and affine equivariant estimator of both location and scatter.
It consists of determining the subset J of observations of size h that minimizes the determinant of the
sample covariance matrix, computed from only these h good observations, which are not considered
to be outliers. The choice of h (also called the tuning constant) determines the robustness of the
estimator; it is a compromise between robustness and efficiency. Once this subset of size h is found, it
is possible to estimate the centrality and the covariance matrix based only upon that subset.

More formally, J is defined as
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J =
{
h : |Σ̂J | < |Σ̂K | ∀K s.t. #K = h

}
(6)

with (n+ d+ 1) /2 ≤ h ≤ n for an n × d data matrix, and where || denotes the determinant of the
matrix, and #K denotes the cardinality of the subset K. The location and scatter are then estimated
to be

µ̂MCD =
1

h

∑
i∈J

xi (7)

Σ̂MCD =
1

h

∑
i∈J

(xi − µ̂MCD)(xi − µ̂MCD)ᵀ (8)

The tuning constant h is generally taken to be its minimum value of (n+ d+ 1) /2 to maximize the
robustness of the MCD estimator.

The computation of the exact MCD estimator is very demanding, as it requires the evaluation of
(
n
h

)
subsets of size h. The FAST-MCD algorithm [5] is computationally efficient and allows the MCD
estimator to be applied to large datasets; it involves the key C-step, which considers a selected set of
h-subsets, starting from random subsets of size p+ 1.

If the outlier detection algorithm is applied to data for the same baselines but on different JDs (as
is done in the LST-binning pipeline), then the data should mostly be near-normal enough for MCD
to work adequately. However, MCD should not be used for multimodal distributions or those that
deviate too far from Gaussianity; as we showed in [1], there is evidence that distinct but redundant
HERA baselines may fall under this category.

2.2 Robust Mahalanobis distance clipping

For robust outlier detection, we require RMD(xi) > cd for some cd threshold. We note that RMD(xi)
approximately follows a χ2 distribution [6], hence we can use

cd =
√
χ2
d; 1−α (9)

that corresponds to the square root of the upper α-quantile of the χ2 distribution with d degrees of
freedom.

We therefore outline steps for finding outliers through these MCD Mahalanobis distances, which we
call robust Mahalanobis distance (RMD)-clipping:

1. Compute RMD(xi) using FAST-MCD with h = (n+ d+ 1) /2

2. Compute the p% quantile Q of the chi-square distribution χ2
d; p (p usually taken to be 0.975, 0.99,

0.999 etc.)

3. Declare RMD(xi) > Q as possible outliers

We note that the threshold Q for this method can be modified such that it is adjusted to the sample
size; an adjusted quantile AQ can be used instead (see e.g. [7]) in step 2. Proceeding with the AQ
option generally improves the false classification rates, while maintaining the same correct classification
rates [8]. The adjusted threshold is computed by comparing the theoretical cumulative χ2

d distribution
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function and the empirical cumulative distribution function of the squared robust distance samples,
and finding the supremum of the difference between the two tails of these distributions.

2.3 Relating quantiles between the N and χ2 distributions

When dealing with outlier detection procedures, we commonly set the rejection threshold in terms
of multiples of σ, the standard deviation of the normal distribution. From Eq. (9), the threshold for
outlier rejection in RMD-clipping is given in terms of χ2 quantiles. We therefore need to relate the
quantiles of the χ2 distribution χ2

d;q to those of a Gaussian distribution zq.

Given a number of standard deviations n, the probability p that a normal deviate lies in the range
between µ− nσ and µ+ nσ is given by

p = FN (µ+ nσ) = Φ(n)−Φ(−n) = erf

(
n√
2

)
(10)

where FN is the cumulative distribution function (CDF) for a generic normal distribution, Φ the CDF
for the standard normal distribution and erf is the error function, which are all related through

FN (x) = Φ

(
x− µ
σ

)
=

1

2

[
1 + erf

(
x√
2

)]
(11)

To retrieve χ2
d; p we apply the quantile function F−1

χ2 (i.e. the inverse of the CDF) to p:

χ2
d;q = F−1

χ2 (p; d) (12)

F−1
χ2 does not have a simple, closed-form representation. Its CDF can, however, be given in terms of

complete Γ and lower incomplete γ gamma functions:

Fχ2 (x; d) =
γ
(
d
2 ,

x
2

)
Γ

(
d
2

) (13)

Using Eq. (12), we numerically compute the χ2
d;q quantile equivalents for zq = 4 and zq = 5 (corres-

ponding to a 4σ and 5σ threshold) to be 19.334 and 28.744, respectively.

We note the following approximation [9] to Eq. (12), which bypasses the complexities of working with
F−1
χ2 and works well for large d:

χ2
d;q ≈

1

2

(
zq +

√
2d− 1

)2
(14)
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3 LST-binning results & comparison to MAD-clipping

3.1 Illustrative example

To better visualize how MAD and RMD-clipping work and differ, we look at sample visibilities across
the 18 nights of H1C_IDR2.2 for the 14 m baseline (55, 71, EE) at frequency channel 514 that fall
into the LST bin centred at 5.5902 with cadence 21.4 s (meaning 2 data points for each JD). We then
perform outlier rejection with both the MAD and RMD-clipping procedures, with clipping threshold
at the 5σ threshold. We also only perform the clipping on each slice if there are at least 5 unflagged
data points.

In Fig. 1, we show the scatter of selected data points as well as the MAD-clipping boundary and outlier
region. We show the same for RMD-clipping in Fig. 2 with concentric Mahalanobis distance contours
also marked.

We compare the MAD and RMD boundaries in Fig. 3, and also show an indicative ellipse with width
2 × 5σmad

Re and height 2 × 5σmad
Im to show a somewhat halfway house between the two methods. As

seen in Fig. 3 and typical of other data slices, the RMD boundary is tighter and more closely confines
the distribution of the data compared to MAD-clipping. The former method is also seen to generally
reject more data points.

The estimated MCD covariance computed for the RMD-clipping in this example is given by the fol-
lowing matrix:

C =

[
6.5727 −2.0061
−2.0061 3.5462

]
(15)

From the eigendecomposition of Eq. (15), we find the eigenvectors and eigenvalues to be

~v1 =

[
0.8950
0.4460

]
, ~v2 =

[
−0.4460

0.8950

]
(16)

λ1 = 7.5723, λ2 = 2.5466 (17)

These can be used to draw the covariance error ellipse that sets the boundary for outliers. The width
and height of the ellipse are given by w = χq

√
λ1 and h = χq

√
λ2, with the orientation given by

α = arctan2(λ1 −C0,0, C0,1), where Ci,j denotes the entry of the covariance matrix at the ith row and
jth column.

In Fig. 4, we show a situation where RMD-clipping rejects a significant number of data points that
would otherwise be well-within the MAD-clipping boundary. This data slice is for baseline (124, 143,
EE) at channel 201 and LST 5.6321. Even by eye, it is difficult to judge if the points on the outside of
the RMD boundary are outliers. As RMD-clipping already rejects a much higher proportion of data
points compared to MAD-clipping (for equivalent quantile thresholds), the threshold for RMD-clipping
could be lowered to reduce the average number of outliers it picks out. As mentioned in §2.1, the MCD
estimator is likely to perform poorly for non-Gaussian data, which will affect a small proportion of
data slices. However, even in such circumstances, it seems that the resulting location of the clipped
distribution still represents the central tendency of the data.

The MCD-clipping procedure implies a covariance to the distribution of data; for perfect white noise,
we do not expect any off-diagonal elements to the covariance matrix. However, certain calibration
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Figure 1: Outlier detection with MAD-clipping, where the red rectangle shows the boundary with
width 2× 5σmad

Re and height 2× 5σmad
Im . No data points are flagged as outliers. The marginal median

is also shown, which represents the location of the distribution according to this particular method.
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Figure 2: Outlier detection with RMD-clipping, with Mahalanobis distance contours shown and the
red ellipse demarcating the inlier/outlier boundary, corresponding to the contour with RMD(x) =
χthresh = 5.361. Two points are flagged in this case. The location returned from the MCD estimator
is also marked.
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Figure 3: Comparison of the outlier boundaries and locations set by the MAD (green) and RMD

(orange) anomaly detection methods. The ellipse with equation
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Figure 4: Comparison of the outlier boundaries and locations set by the MAD (green) and RMD
(orange) anomaly detection methods for a different example data slice. In this case, the RMD algorithm
discounts 13 points that would otherwise not come close to being clipped with the MAD method.
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steps from the analysis pipeline may stretch the data along particular axes, which would explain the
tilted covariance ellipses seen in the data. This asymmetry and tilt could also be caused if sky emission
contributes to the noise - this is particularly relevant at lower frequencies.

3.2 Clip flags for a 20 min LST-binned file

We test the clipping routines on the LST-binning of 20 min of H1C_IDR2.2 visibility data between
LSTs 5.3868–5.7398 for all the unflagged 14 m baselines. We look at the EE polarization only. Again,
we use a 5σ threshold and only flag data slices with more than 5 data points. We summarize the
results in Table 1.

Clipping routine Compute time Number of additional flags % of total flags

MAD ≈ 30 s 146,141 0.192%

RMD ≈ 3 h 1,250,164 1.619%

Table 1: Sample flagging capabilities for the MAD and RMD-clipping routines. Compute times are
from using 1 node, 8 cores at NRAO. For the equivalent quantile thresholds, RMD-clipping flags 8.55
times more data point than MAD-clipping; this is far more than would be expected if the data were
Gaussian distributed. We note that the sklearn.covariance.MinCovDet MCD estimator used for
these results has a (pseudo) randomness element that is used for shuffling the data; the random state
should be fixed for reproducibility. RMD-clipping is computationally expensive, being over 360 times
slower than MAD-clipping; this is because the MCD estimator and subsequent Mahalanobis distance
calculations need to be run separately for each frequency/time/baseline slice, while for MAD-clipping
the operations are simple and vectorized in NumPy.

We then apply these new flags to the dataset, and, in line with the LST-binning pipeline, we take the
mean of each LST bin.

Looking more closely at the visibilities redundant (both in length and orientation) to (1, 12, EE), we
further take the mean over baselines to get the visibility estimates shown in Fig. 5 (amplitude) and
Fig. 6 (phase). These look seemingly identical, as the fraction of flags due to clipping is minute (see
Table 1), and the difference in the mean between unflagged MAD and RMD-clipped points is also very
small; any difference is further suppressed from averaging along the baselines axis.

In Fig. 7, we show the number of flags for each time/frequency slice with the MAD and RMD outlier
rejection algorithms (with clipping done across JDs only and flags summed over the baseline axis).
Both processes seem to pick out the same problematic time integrations. The RMD-clipping routine
does, however, seem to be able to better pick out anomalous features confined to particular frequencies
(i.e. it has some light vertical lines not seen in the plot for MAD-clipping, even if the number of flags is
normalized), with some of these channels known to be bad. This suggests that RMD-clipping is more
effective at finding genuine problematic issues with the data.

For a simple PS comparison of these clipping results, we compute the cross-PS across all baseline
permutations, where we are still only looking at baselines redundant to (1, 12, EE). We then mean
average these cross-PS in time, producing Fig. 8. The resulting PS are very similar and achieve the
same noise-floor, although the mean residual between the two PS for delays |τ | ≥ 1.25 µs (chosen to
avoid the ±1 µs bump) is marginally (but insignificantly) lower, meaning that the PS from RMD-
clipped visibilities very slightly edges out that from MAD-clipped ones. A deeper analysis would offer
more definitive results.
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Figure 5: Visibility amplitudes after mean averaging across JDs and baselines post MAD (top) and
RMD (bottom) clipping.
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(bottom) clipping.
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4 Conclusion

We have presented a robust method of outlier rejection that employs MCD-based Mahalanobis dis-
tances, which we call RMD-clipping.

We compare RMD-clipping to the established MAD-clipping that is used in the LST-binning pipeline:
statistically speaking, RMD-clipping should be more sound for data contaminated with non-Gaussian
noise such as RFI as it considers the robust location and covariance of the data and delineates reas-
onable elliptical outlier boundaries. Comparatively, MAD-clipping is rather rudimentary as it draws a
boundary box around the data and treats the Re and Im components completely separately.

Empirically, through the research presented in this memorandum and in that of [1], it is found that
the Re and Im components of LST-binned visibilities not only have unequal variance, but they have
non-zero covariance. The RMD-clipping method should thus perform better than MAD-clipping,
with preliminary results showing slight improvement in the PS; extending this procedure to the full
H1C_IDR2.2 analysis could further improve the limits set in [2].

The clipping observed for equivalent quantiles is more aggressive for RMD-clipping (by a factor of
around 8). With existing concerns of overflagging, the threshold could be increased if RMD-clipping
is to be used in production.

While computationally expensive, we recommend the use of RMD-clipping as the preferred method of
outlier rejection. This technique could also be used at other stages of the analysis pipeline.

In [1], we explained how robust multivariate estimators such as the geometric median can be used
to get location estimates that better represent contaminated/non-normal data; such robust location
estimators could be used outright without having to conduct any prior outlier rejection.
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