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Abstract

In this memo we present improvements on an analytical approximation of a simulation of the beam of the
HERA dishes developed in [Fag+20] via a CST simulation. We build upon the approximation developed in [CBK20],
focusing mainly on the incorporation of polarization e�ects, and seeking a better fit of the various components of
the electric field and the derived power beams. We find that, by modulating the existing analytical approximation
with an adjusted dipole matrix, we are able to recover polarization structure for the E-fields, and that the derived
power beams show decent fitting. Weighted normalized di�erences with the reference beam are in the 5-25% range.
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1 Introduction

In [CBK20], e�cient1 analytical representations of the (azimuthally-averaged) pseudo-Stokes I Fagnoni beam at
100 MHz were found. They consist in functional bases of Chebyshev polynomials that were selected against other
families of polynomials for o�ering the best compromise between accuracy and succinctness in the number of pa-
rameters. An attempt to fitting this very beam at higher frequencies (up to 200 MHz) was also made by adding a
power law in frequency scaling the zenith angle (resulting in a contraction of the beam at higher frequencies). The
derived PolyBeam E-field obtained with these parameters is the square-root of that fitted power beam, thus lacking
cross-polarization and imaginary components2. Hence, it does not adequately model the di�erent polarizations of
the “original” E-field, as shown in figure 1.
Note that in this memo, the HERA beam of reference, “the Fagnoni beam”, was downloaded from the hera_pspec
GitHub repository in the form of a beamfits file, and peak normalized.

1i.e. depending on few coe�cients (typically ∼ 20).
2as the pseudo-Stokes Fagnoni power beam is itself real.
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Figure 1: Modulus (log10) and phase of X/Y polarizations of the Fagnoni E-field beam (left), and of the PolyBeam
(right) at 100 MHz (up), and 200 MHz (down).
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2 Polarization-related changes to PolyBeam

In order to take into account the polarized nature of the true beam, and its best representation at our disposal in the
form of the Fagnoni beam, we modulate the original unpolarized PolyBeam with a polarized dipole pattern.
More specifically, we multiply the beam pattern with a zenith–and–azimuth–dependent complex dipole matrixM :

M = q(θs)×
(
1 + p(θs)× i

)
×
[
− sin(φ) cos(φ)

cos(φ) sin(φ)

]
(1)

where i is the imaginary unit, θs is the stretched zenith angle, φ the azimuth angle, p and q are the functions defined
ad hoc by:

p(θs) =

{
0 if θs < π

11

π sin(πθs) otherwise
and q(θs) =

{
i if π

6 > θs >
π
11

1 otherwise
(2)

and the stretched zenith angle θs is θs = θ ×
(
f
fref

)−β
, that is the zenith angle θ divided by the power law defined

in [CBK20]. The p function was introduced as an attempt to reproduce both the general behavior of the phase of
the Fagnoni beam (the sin part) and the “first ring” (the θ < π

11 region), while the q function specifically renders
the “second ring” (the π

6 > θ > π
11 region). The stretching of the zenith angle had to also be added here since the

original code does not take into account the phase component.
We then attempt to further match the frequency-dependent behavior of the Fagnoni beam by shifting the phase of
the resulting PolyBeam. We do this, again ad hoc, by subtracting an a�ne function of frequency to the phase of the
PolyBeam:

phase(B) 7−→ phase(B)− π(f − fref)

18 MHz
(3)

where B is the complex beam at any given frequency and polarization, and f and fref are respectively the frequency
at which the beam is computed and the reference frequency for the beam width scaling power law. The resulting
phase is then wrapped to [−π, π], following the Fagnoni beam’s convention.
Finally, we scale the modulus of that newly polarized PolyBeam by elevating it to an ad-hoc power exponent of 0.6,
so that it fits better the Fagnoni beam, and especially the azimuthally-averaged power beams shown in figure 7.

3 Fitting to the reference Fagnoni beam

We chose to work with the parameters3 described in [Gar] that were obtained by fitting the square root of the Fagnoni
beam, and instantiate a PolyBeam object with the following parameters:

1 ref_freq = 1e8
2 spectral_index = -0.6975
3 beam_coeffs = [ 2.35088101e-01, -4.20162599e-01, 2.99189140e-01, -1.54189057e-01
4 3.38651457e-02, 3.46936067e-02, -4.98838130e-02, 3.23054464e-02, -7.56006552e-03,
5 -7.24620596e-03, 7.99563166e-03, -2.78125602e-03, -8.19945835e-04, 1.13791191e-03,
6 -1.24301372e-04, -3.74808752e-04, 1.93997376e-04, -1.72012040e-05]
7 polarized = True

using the viscpu_pol branch of hera_sim, where spectral_index is the power exponent of the power law (denoted
β beforehand).

3.1 E-�elds

We decide to consider the modulus and phase of the E-fields rather than their real and imaginary part as the polar
representation o�ers vastly more structure than the Cartesian one. Since each polarization shows quite di�erent
structure, we hence further di�erentiate them, allowing us to independently compare the hoped-for improvements on
each polarization.
Figure 2 shows this polarized PolyBeam in orthographic projection at 100 MHz (where the fit is the best) and 200
MHz, alongside the reference beam. One can see that the polarized version now shows proper structure for each
polarization and scalar component, and that the dipole–like structure of the Fagnoni beam –especially seen at the
center– is better approximated. The fitting clearly degrades with frequency, especially for the phase.

318 polynomial coe�cients, a reference frequency and a spectral index.
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Figure 2: X/Y polarizations of the E-fields in orthographic projection. Only the “upper” hemisphere is shown.
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Figure 3: Absolute di�erence of the modulus (log10) and di�erence of the phase of X/Y polarizations of the Fagnoni
beam and the polarized PolyBeam at 100 MHz (left) and 200 MHz (right). Hemispherical orthographic projection.

However, the phase of the beam, although showing complex structure –especially at high frequency– is quite well
approached in the center, where the modulus of the E-field is the greater.
In figure 3 we plot the di�erence of these beams. Note that the di�erence between the modulus is actually the log10
of the absolute di�erence, and that the di�erence of the phases is always wrapped back to [−π, π]. It reveals clearly
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that some phase structure, especially at high frequencies, is still unmatched, and that systemic o�sets of the modulus
still exist (note that a higher di�erence in the center is also associated with higher values of the beam).
Since the beams studied here are complex 2D spherical maps depending on polarization and frequency, this would
give us 208 2D scalar maps to compare for the raw E-fields, and 104 for the pseudo-Stokes power beams4. Therefore,
we obviously need to summarize their di�erence. Let us first try to compare the raw E-fields. We plot measurements,
aggregated over the sphere, of the fitting of the polarized PolyBeam to the Fagnoni beam along frequency, by far the
smoothest axis of our data. The results we obtain depend of course on the metric used to compare the beams.

3.1.1 Hemispherical weighted mean and median deviation

We plot the upper hemispherical weighted mean and median deviation along frequency, that is:〈
1− PolyBeam

Fagnoni

〉
W

(4)

where “PolyBeam” or “Fagnoni” denotes the eponym beam on the θ ∈ [0, π2 ] “upper hemisphere” region, at a given
frequency and polarization, and

〈
·
〉

W represents either the mean or the median, computed over all the hemisphere,
and weighted either by a “0-1” function χ selecting a part of the hemisphere with lower θ angles than a certain θcut,
or by the very values of the modulus of the Fagnoni beam, noted |Fagnoni|, at the corresponding frequency and
polarization, that is:

〈X〉W =

〈
X × χ(θ < θcut)

Σ

〉
or 〈X〉W =

〈
X × |Fagnoni|

Σ

〉
(5)

where Σ is the sum of the weights, and all operations happen element-wise5.
The smaller θcut is, the less we take into account the outer lobes of the beams, where the fit is less convincing, but also
where the beam itself is closer to zero. We also chose to take the modulus of the Fagnoni beam itself as a weighting
because it does indeed represent the sensibility of the array, better than a simpler Gaussian filter for example.
In figure 4 we plot this metric (in percentage) for each polarization, frequency and polar coordinate, and for di�erent
weightings for the modulus only, as di�erent weightings did not output significantly di�erent results for the phase. The
numbers obtained are usually in the 10% range, but with high variability. Globally, and as expected, tighter weighting
around the center gives lower deviations. The median value is also often lower than the mean one, indicating that
outliers perturb the averaging. The median phase component for example shows good results, below 10%, for the
XX and YY polarizations below 132 MHz, and the median modulus component of the XY and YX polarization, is
almost always 10% throughout the frequency range with the Fagnoni weighting.

3.1.2 Hemispherical weighted normalized distance

Another metric would be the weighted normalized distance (still computed within the upper hemisphere only), that
is:

‖Fagnoni− PolyBeam‖W
‖Fagnoni‖

(6)

where ‖·‖ denotes the euclidean vector 2-norm and ‖·‖W the weighted one, defined by:

‖X‖W =

∥∥∥∥X × χ(θ < θcut)

Σ

∥∥∥∥ or ‖X‖W =

∥∥∥∥X × |Fagnoni|
Σ

∥∥∥∥ (7)

This metric is shown in percentage in figure 5. The distance reveals in a clearer way the e�ect of the weighting,
strongly enhancing the numbers with the Fagnoni weighting compared to the θcut = π/3 one. The normalized dis-
tance weighted with the actual Fagnoni beam shows consistent values in the 15-25% range for the modulus, and 5-20%
for the phase.
It must be noted that, for the same weighting, the polarized version systematically achieves better results than the
original one where it exists (so for the modulus of two polarizations), meaning that not only did we not alter the
“existing fit”, but we actually improved it6.

426 frequencies (those of the Fagnoni beam), 1 or 2 scalar component(s), 4 polarizations.
5That is, pixel-by-pixel.
6Note that fitting the E-field was not the purpose of the original PolyBeam.
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Figure 4: Modulus and phase of the absolute value of the upper hemispherical weighted mean and median deviation
for the 4 linear polarization for the polarized PolyBeam (blue), and the original one (orange) where it is non-null,
along frequency.
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Figure 5: Modulus and phase of the upper hemispherical normalized distance for the 4 linear polarization for both
the original PolyBeam (orange) where it exists and the polarized one (blue) along frequency.
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3.2 Power �elds

Let us now explore what changes were passed on to the power beams, after having modified the raw E-fields as
described earlier. We use the “same”, slightly adapted source code to derive the pseudo-Stokes power beams from
our PolyBeam object as the pyuvdata library, used for the Fagnoni beam, notably directly re-using the basis vector of
the Fagnoni beam. In figure 6 we plot hemispherical orthographic projections of the pseudo-Stokes power fields for
the Fagnoni and polarized PolyBeam at extremal frequencies. The original PolyBeam (not shown here) consists only
in a fit of the pI Fagnoni beam at 100 Mhz, and lacks some structure observed in the reference beam that is however
seen in the Polarized version. It is also clear that, like for the modulus of the E-fields described earlier, a systematic
o�set appears at high frequencies in the outer lobes of the hemisphere.
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Figure 6: Pseudo-Stokes power fields (log10)

3.2.1 Azimuth averaging

To further compare the highly azimuthally-symmetric power beams, we average them along the φ axis at a given θ
value, and represent them against the reference Fagnoni beam in figure 7, at selected frequencies, for the 4 polariza-
tions. The original PolyBeam fits perfectly the pseudo-Stokes I Fagnoni beam at 100 MHz, as expected. It is clear
that more than a simple power scaling law is still needed to take into account the variations of the Fagnoni power
field at higher θ angle along frequency, however these variations are of very low magnitude compared to the values
of the low θ region. The polarized PolyBeam power beams show decent fitting at pQ, pU and pV polarizations of
the corresponding Fagnoni beams up to 0.3 or 0.5 rad, thanks only to the newly polarized E-field from which these
power beams were computed, thus validating that the power beams are also consistent with the reference.
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Figure 7: Azimuth-averaged pseudo-Stokes power beams (log10) for pI, pQ, pU, pV polarizations at 100 Mhz (left)
and 180 MHz (right).
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4 Conclusion

In this memo we found an ad-hoc way of deriving complex E-fields at all frequencies and polarizations from an
analytical approximation of a real power beam at one frequency and polarization. The operation consisted in mod-
ulating the original approximation with a zenith, azimuth, and frequency –dependent complex “dipole matrix” that
eventually rendered de visu satisfying results, and acceptable aggregated results. We feel that in order to achieve an
excellent analytical approximation of the electric fields computed in [Fag+20], a direct polynomial fitting on these,
fully taking into account the frequency and polarization dimensions, rather than on an azimuthally-averaged power
beam, should be attempted. We provide several opening references ([Ler+11], [Ler+13], and [BCL17]) on the SKA
telescope, notably using Zernike polynomials to represent the beam pattern.
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