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Abstract

In this note we derive the joint probability density function of the real and imaginary parts of a
single delay spectrum bandpower, assuming that the input visibilities have been coherently averaged, and
contain only EoR signal and white noise. This distribution has an analytic expression, and di↵ers from
what would be expected for a bandpower derived from signal-only visibilities.

Background

One route towards measuring the delay spectrum with HERA involves performing a coherent average of
visibilities within each redundant group and then calculating the cross-spectrum of neighbouring (‘inter-
leaved’) time samples. The idea is that the sky signal will change very little between neighbouring time
samples (assuming a ⇠ 20� 40 sec integration time per sample), but the noise between the samples will be
independent. Coherent averaging has the advantage of beating down the noise more rapidly than incoherent
averaging, and also reduces the computational requirements of power spectrum estimation (since only one
cross-spectrum is required per redundant group).

We consider a scenario where visibilities have been transformed into delay space, and are uncorrelated
between di↵erent delay modes (i.e. ignoring the e↵ects of tapering or missing channels due to flagging).
With the highest delay modes in mind, we model the delay-space visibility at a given LST as

Va = s+ na, (1)

where s is a mean-zero Gaussian random variate that models the EoR signal, and na is also a mean-zero
Gaussian r.v. that models the noise. Both are complex valued. If the visibility is formed from a coherent
average of visibilities from within the same redundant group, Va = (1/n)

P
p Vp, the expected distribution

of Va is still a Gaussian r.v. with mean zero, where we have neglected the e↵ects of possible systematics.
At a neighbouring time b, we make the approximation

Vb ⇡ s+ nb, (2)

where s = sa ⇡ sb. We may then form a product of these visibilities as an estimate of the delay spectrum
at this delay,

Pab = VaV
†
b . (3)

Distribution of a product of correlated complex Gaussian random variates

We wish to derive the probability density function for the real and imaginary parts of the bandpower Pab.
Starting from Eq. 3, we can see that this is constructed from the product of two complex Gaussian random
variates that are partially correlated (since they both share the same realisation of s, but di↵erent noise
realisations),

Pab = (s+ na)(s+ nb)
†, (4)

where the expectation value of the bandpower is

hPabi = hVaV
†
b i = hss†i. (5)
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Figure 1: Shaded regions: Histograms of real and imaginary parts of bandpower Pab, calculated from 105

random realisations with Cs = 42 + 42 = 32 and Cn,a = Cn,b = 12 + 12 = 2. Dashed lines: Normalised
marginal distributions of the real and imaginary bandpower components calculated according to Eq. 8.

Note that no averaging over time samples has been performed yet. An appropriate probability distribu-
tion for a product of correlated complex Gaussian r.v’s was derived by [1]; for complex visibilities with
(expectation) zero mean, this is

p(zR, zI) =
2

⇡CaaCbb

p
1� |⇢|2

exp

✓
2Re(⇢z†)

(1� |⇢|2)
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CaaCbb
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✓
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(1� |⇢|2)
p
CaaCbb

◆
, (6)

where z = zR+izI is a particular realisation of Pab. In the expression above, K0 is a modified Bessel function
of the second kind; beware a singularity at z = 0. The components of the complex covariance matrices are

Caa = Cs + Cn,a; Cbb = Cs + Cn,b; Cab = Cs, (7)

where the signal and noise covariances are defined as Cs = hss†i;Cn = hnn†i, and the correlation coe�cient
is ⇢ = Cab/

p
CaaCbb.

Note that Eq. 6 is the joint pdf of the real and imaginary parts of the bandpower; the marginal distri-
bution for either real or imaginary part only can be calculated as (e.g. for the real part)

p(zR) = N
Z

p(zR, zI) dzI , (8)

where N is a normalising factor that must be calculated if p(zR) is to be used as a pdf.
Fig. 1 shows that the expression from Eq. 8 agrees very well with the marginal distributions derived

from 100,000 Monte Carlo realisations of the complex bandpowers, in this case with an EoR signal that
has several times the variance of the noise components. We have checked that similarly good agreement
exists for a range of other values for the signal and noise variances. Note that no fitting or rescaling of the
distributions was required; the histograms and marginal distribution calculations were performed completely
separately and agree very well.
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Inclusion of correlated ‘systematics’ terms

We will now add a ‘systematics’ component to the visibilities that is correlated between neighbouring time
samples. For simplicity we will model it as having expected mean zero, as otherwise the maths becomes
much messier. Our model for visibilities containing a Gaussian systematics r.v. ✏ is Va = s+na+ ✏a, where

h✏i = 0; h✏i✏†ji = C✏
ij ; hs✏†i = hn✏†i = 0, (9)

where i, j 2 {a, b}. Since the visibilities remain Gaussian even after the addition of the systematics term,
all we need to do is update the covariance terms to obtain a suitable pdf,

Caa = Cs + Cn,a + C✏
aa; Cbb = Cs + Cn,b + C✏

bb; Cab = Cs + C✏
ab. (10)
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