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In this document, we set out the formalism, modelling choices, and approximations used by the vis cpu

visibility simulator. The original code was written by Aaron Parsons and has since been added to by
Hugh Garsden, Phil Bull, and others. The latest code and releases of vis cpu can be found on GitHub at
https://github.com/HERA-Team/vis_cpu.

Formulation of the visibility calculation

Source location in Cartesian equatorial coordinates: First, source locations in equatorial coordinates
(RA= ↵ and Dec= �) on the unit sphere are converted to a Cartesian system (where sources are assumed
to be on a unit sphere), with coordinates
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for source n. This results in an array of Cartesian positions of the sources call crd eq, which has shape (3,
Nsrcs). This factor is time- and frequency-independent.

Rotation from equatorial to topocentric coordinates: Next, a rotation matrix that converts
Cartesian equatorial coordinates to topocentric coordinates is calculated. This depends on time (LST), and
the latitude of the array, l. For an hour angle H = �t, where t is the LST,
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For each time sample, the rotation of source positions from equatorial to topocentric coordinates can be
calculated as
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which in the code is given by crd top = np.dot(eq2top, crd eq). We can unpack the components of the
topocentric coordinate vector as ~p = (p
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), which are referred to as tx, ty, tz in the code. In this
coordinate system, p

z

< 0 denotes a source that is below the horizon, and so its flux should be set to zero.
In the code, this is achieved by setting its beam factor A

n

= 0.

Geometric delay for each source and antenna: Next, the geometric delay, ⌧0, is calculated for
each source. This depends on the position of source n on the sky, ~p

n

, and the antenna position vector ~X
i

,
and in these coordinates can be found directly by taking a dot product,
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where c is the speed of light. In the code, this is written as tau = np.dot(antpos, crd top) / c.value.
We use the subscript 0 to denote that this is the geometric delay between the antenna position and the
origin of the array at ~X = (0, 0, 0).

Complex phase factor: We are now in a position to calculate the complex phase factor for each
source, for each antenna i, which depends on frequency and time,
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Note that the calculation in the code uses the angular frequency in this expression, defined as ! = 2⇡⌫.

Product with the sky brightness distribution: The vis cpu code has an outer loop over frequency,
⌫, and an internal loop over LST or time, t. For each iteration of those loops, we have so far calculated a
phase factor �0(⌫, t), which has shape (Nants, Nsrcs). Next, we can multiply by the sky brightness, which
is constructed from the flux of each source at each frequency. As a computational trick, we take the square

root of the flux to obtain
p
f
n

(⌫) for source n at frequency ⌫. The flux is real and positive semi-definite, so
the square root is always defined. Note that the SED (the flux as a function of frequency) for each source
is calculated outside the main vis cpu function, and so any arbitrary frequency spectrum can be given to
each source.

Per-antenna visibility factor: We can now take the product of the phase factor (per source n and
antenna i) with the sky brightness factor per source to get
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The quantity v
(i)
n

is the contribution of antenna i and source n to a visibility V
ij

, before modulation by the
antenna pattern. Originally, the beam factor was also attached directly to the per-antenna visibility factor, v.

Polarized antenna factor (conversion to Az-ZA coordinates): We must also include the primary
beam antenna factor for each source and antenna, evaluated at the location of each source in the beam
pattern. Since the HERA antennas are zenith-pointing drift-scan telescopes, the appropriate coordinate
system to evaluate the source positions is always an Alt-Az (or actually azimuth-zenith angle) coordinate
system. The Az-ZA coordinates (� and ✓ respectively) for each source are a function of time.

To convert from Cartesian to Alt-ZA coordinates, we can use the p
x

and p
y

coordinates calculated earlier,
which can simply be identified as the angle cosines ` and m, such that
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Polarized antenna factor (beam evaluation): With the Az-ZA coordinates of each source in
hand, the complex (E-field) beam factor can be evaluated at the location of each source. Originally, this was
done by first constructing a 2D spline (RectBivariateSpline) of orders kx = 1 and ky = 1, i.e. bilinear
interpolation, for each antenna. The interpolation data could be precomputed once for each antenna and
frequency, with new evaluations of the interpolation function needed for each time as the sources moved on
the sky (but no need to recompute the interpolation data itself). The resolution of the interpolation grid
can be chosen by the user, with finer grids requiring increased precomputation and spline evaluation time.

This ‘pixel beam’ mode is still supported. In addition, the code can now evaluate the beam directly,
using the interp method on a UVBeam object. Since UVBeam objects generally have their own internal
interpolation data and functions, this can be used natively, avoiding the need to build another interpolator
and thus increased computation time and interpolation errors. This is particularly useful for analytic beams
models, which can be evaluated precisely, without any interpolation. This all happens transparently to
vis cpu, which only needs to know how to call the interp() method on the UVBeam object.

Note that we allow the antenna beam to be di↵erent for each antenna, i.e. we require no assumption of
identical antennas.

Polarized antenna factor (Jones matrix): In both of the cases above, we evaluate the antenna
pattern at the position of each source. There is an unpolarized beam mode which calculates only the ee
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polarization (the East-East or xx polarization), but this is just a special case of the full polarized beam
mode, which computes a 2 ⇥ 2 Jones matrix of the antenna response for each source. The dimensions of
this matrix are the E-field axes – by convention, (�̂, ✓̂), the unit vectors in the azimuth and zenith angle
directions – and the feeds, which are taken to be n (North) and e (East) feeds, with both dimensions being

ordered in the order stated here. Each beam factor A(i)
n therefore has shape (Naxes, Nfeeds, Nsrcs).

Note that the sky model is currently assumed to be (pseudo-)Stokes I only; we do not currently have
Stokes Q and U channels in the sky model.

Final multiplication to calculate the visibilities: With the polarized beams and per-antenna
visibility factors in hand, we can now perform a series of array/matrix products to form the visibilities for
all antenna pairs. Because of the way this multiplication is vectorized, we necessarily calculate the visibilities
for all antenna pairs; we cannot arbitrarily calculate some pairs and not others.

We use Einstein summation convention (implemented through an einsum function call) to state the
expression for the product, which handles the cross-multiplications of the visibility factors, the Jones matrices
for each antenna, and the sum over source contributions to the visibility. The expression is
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, i.e. an elementwise product in the i and n indices. The Jones matrix indices are
a, b, c (with only a = (n, e) and b = (n, e) retained after doing the matrix product implied by the repeated
c indices, so these become feed indices), the antennas are labelled by i, j, and the sources are labelled by
n (which is summed over). Recall that there are two outer loops over frequency and time, so this product
is evaluated for each frequency and time separately. In the code, the expression is actually evaluated in a
triangular fashion, via a single loop over antennas i to evaluate the product with antennas j � i at each
iteration.

Note the trick that has been used here. The per-antenna visibility factors contain only part of the phase
information for each visibility, referenced against the phase to the origin of the array. By taking the product
of them for antennas i and j, with an appropriate complex conjugate on one of the factors, the common
factor of the phase to the origin cancels out, leaving only the di↵erence in the delays between the two
antennas, which is the correct phase factor for the baseline (i, j). The square-rooting of the sky brightness
is also undone by this procedure; since the sky brightness is real and positive semi-definite, the product
simply gives us the expected factor of the flux,
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