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ABSTRACT

We compute fringe-rate filter specifications for HERA visibilities outfitted with Vivaldi feeds for the

suppression of cross-coupling systematics and for coherent time averaging. We perform ensemble

mock EoR simulations with a Vivaldi beam response to compute the power spectral density (PSD) of

an EoR-like sky in the fringe-rate domain. Using this, we can set specifications for how aggressive a

fringe-rate filter can be before it begins to attenuate a certain fraction of the EoR signal. Said another

way, we can determine the lossiness of a time filter based on which fringe-rate modes it keeps and

which it rejects. We perform these tests for a fiducial beam model, and for the first time explore how

primary beam perturbations impact these results. For fiducial feed displacement perturbations less

than 3 cm, we find that the perturbed beam has a negligible impact on the EoR time correlations in

the visibilities.

1. INTRODUCTION

Cross-coupling systematics in radio telescopes arise

from the coupling of the voltage signals in the RF ana-

log chain between antennas. They can arise from a

variety of mechanisms, such as antenna-to-antenna re-

flections (i.e. mutual coupling) and capacitive crosstalk

in analog-to-digital converter (ADC) units. These sys-

tematics can have non-trivial spectral structure, and

are therefore necessary to control for 21 cm surveys

that rely on spectral smoothness of the instrument re-

sponse to isolate the weak cosmological signal. Parsons

et al. (2016) presents an interferometric visibility filter-

ing technique that uses the different time correlations of

cross-coupling systematics and sky signals as a means

to reject the former and isolate the latter. This relies

on the assumption that cross-coupling systematics are

slowly variable in time (e.g. see Kern et al. 2019), oc-

cupying mainly the common-mode (DC term) Fourier

mode, whereas any sky signal of a drift-scan experiment

will oscillate as the sky moves through the interferomet-

ric fringes, and therefore will occupy mainly non-zero

Fourier modes.1 Note that in this work, we define the

Fourier domain as the Fourier transform across the time

axis of the data (into the frige-rate domain), not the fre-

1 This is only true for baselines with non-zero projection along
the East-West direction.

quency axis. See also Shaw et al. (2014) for a description

of how sky signals source time correlations into the vis-

ibilities of a drift-scan interferometer.

Parsons et al. (2016) show that under certain assump-

tions one can analytically compute the expected distri-

bution of an EoR sky signal (independent of the EoR

power spectrum model) in the fringe-rate Fourier basis

(the Fourier dual of time) at each observed frequency

channel. Given this distribution, they can tailor a high-

pass time filter that filters off the slowly variable system-

atics, while largely preserving the EoR sky signal. The

amount of EoR loss can be tuned to a nearly arbitrary

amount, with increasing systematic rejection coming at

the expense of increased EoR loss. In Ali et al. (2015),

this was chosen to yield ∼ 28% power loss, which was

later corrected for at the end stage of the analysis.

However, the assumptions made in the analytic cal-

culation of Parsons et al. (2016) begin to break down

for experiments like the Hydrogen Epoch of Reioniza-

tion Array (HERA), where for the shortest baselines the

fringe separation is on the order of the primary beam full

width half max (FWHM). In order to compute the power

spectral density of an EoR signal in the fringe-rate do-

main, we therefore turn to Monte Carlo simulations of

EoR sky signals, similar to Kern et al. (2019).

First let us define how we simulate the visibility re-

sponse of an interferometer. The interferometric visibil-

ity between two antennas j and k at frequency ν and
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local sidereal time (t) is given as

Vjk(ν, t) =

∫
dΩA(ν, ŝ)I(ν, ŝ, t)e2πibjk ŝν/c, (1)

where the integral is over the sphere, ŝ is a unit pointing

vector in local array coordinates (i.e. topocentric coor-

dinates), A is the scalar primary beam response2 of the

antennas (assumed to be the same for each antenna),

and I is the specific intensity of the sky that lies along

ŝ at time t. Note that for a fixed location on the sky in

topocentric coordinates, the primary beam and fringe

of the interferometer are fixed as a function of time,

whereas it is the sky that is assumed to drift through

the beam as a function of LST. We evaluate Equation 1

by representing the sky, beam, and fringe response as

a NSDIE=128 HEALpix map (Górski et al. 2005) and

directly sum their product, using the healvis visibil-

ity simulator (Lanman & Pober 2019; Lanman et al.

2020). For the frequencies and baselines explored in

this work, representing the integral of Equation 1 with

a NSIDE=128 HEALpix map has been shown to be ad-

equate (Lanman & Pober 2019).

To model an EoR-like signal, we use an uncorrelated

Gaussian random field for each pixel on the sky for each

frequency channel (Figure 1). Because we are interested

in computing the time correlations of an EoR-like, sky-

locked signal, the frequency correlations of the model

are not important. This means that our results will be

largely insensitive to the power spectrum of the EoR

model, and thus largely model independent.3 While the

mock EoR field is drawn with a variance of 25 mK2, the

amplitude of the field is irrelevant for determining the

shape of the power spectral density in fringe-rate space.

The frequency and sky angle response of the primary

beam is simulated using CST Microwave Studio mod-

els of the HERA dish and feed, discussed more in the

following section. We also compare against an analytic

Airy disk model with an aperture size of 14-meters. We

simulate visibilities for both XX and YY linear polar-

izations, which will each have a slightly different time

correlations depending on the parts of the sky they up-

weight. However, due to the fact that we are mainly

interested in the Stokes I content of the sky, the power

spectral density and time averaging analyses presented

here operate on the pseudo-Stokes I visibility, formed as

VI = 1
2 (VXX + VY Y ). The simulation parameters used

2 The “power beam.”

3 One complication here is that the angular correlations of the
model, at fixed frequency, will slightly change the measured corre-
lations across time; however, because we are primarily interested
in HERA’s short baseline length, we expect these correlations to
have a negligibly small impact on the results. Indeed, similar anal-
yses have been done with different EoR power spectrum models
that have yielded similar results.

Figure 1. A HEALpix map of a single mock δTb EoR real-
ization at 165 MHz, which is drawn from a white Gaussian
distribution.

xshift [3 cm]

zshift [3 cm
]

Figure 2. A Vivaldi feed installed in the field on a HERA
dish. The feed is suspended by three kevlar cables attached
to wooden poles surrounding the dish. Its vertical height is
secured by a cable pulling it down from the center of the dish.
In Section 2 and Section 3 we use a fiducial model where the
feed is centered, whereas in Appendix A we explore how feed
translation along the z and x direction (green arrows) impact
our results.

in this work are tabulated in Table 1.

Table 1. Healvis Simulation Parameters

Parameter Value

Sky Resolution HEALpix NSIDE 128

EoR Model White Gaussian Field

Primary Beam Model #1 Fagnoni Vivaldi CST Simulation

Table 1 continued
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Table 1 (continued)

Parameter Value

Primary Beam Model #2 Airy Disk, 14 m aperture

Frequency Range 60 – 140 MHz

Baseline Lengths 0 – 90 meters

Polarizations Linear XX & YY

Note—The power spectral density and time averaging analyses dis-
cussed below operate on the pseudo-Stokes I visibility.

2. POWER SPECTRAL DENSITIES IN THE

FRINGE-RATE DOMAIN

To determine how much signal is lost when averaging

EoR visibilities across LST (i.e. in applying a time-

based filter), we need to compute the power spectral

density (PSD) of the EoR visibilities in fringe-rate space

(f), which is the square of the Fourier transformed vis-

ibilities. We first define the Fourier transform of the

visibilities across LST,

Ṽ (ν, f) =

∫
dtV (ν, t)e2πitf , (2)

and then square the result and average across inde-

pendent realizations to get an approximation of the

ensemble-averaged PSD,

〈P (ν, f)〉 ≈ 1

N

N∑
i

|Ṽi(ν, f)|2 (3)

where i indexes independent EoR simulations with the

same beam model but with a different statistical real-

ization of the sky.

We can gain some intuition for the expected fringe-

rate behavior by inspecting the Fourier transform of the

visibility (across time). Assume the observer is situated

in local topocentric coordinates and let us simplify our

sky model to a single point source. Over the course of an

observing night, we will observe the source move across

the sky and move through the primary beam response as

well as the baseline fringes (for a drift-scan telescope).

At any given moment, the movement of a source through

the fringes creates a complex sinusoid in the visibility as

a function of time, with a characteristic period given

by the projection of the source’s angular velocity onto

the fringe pattern. Assuming the beam is smooth and

constant, this is the only source of time correlations in

the visibility. However, relaxing this assumption, we see

that the beam (being multiplicative in the time domain)

acts to convolve the delta-function fringe-rate response

of a point source in the visibility with its own fringe-rate

“beam kernel.” The faster the beam evolves spatially at

Figure 3. Figures 1 & 2 from Parsons et al. (2016), showing
the fringe response of a 30-m East-West baseline at 150 MHz
on the sky (top) and the angular velocity of point sources
at different sky coordinates (vectors). The instantaneous
movement of the sky through the fringes therefore creates
a “fringe-rate” response in the visibilities that is direction
dependent based on HERA’s latitude (bottom). To first-
order, visibility fringe-rate filtering can be thought of as a
sculpting of the field-of-view.

a given point on the sky the wider this beam kernel will

be in fringe-rate space, which will spread the intrinsic

fringe-rate response of the point source moving through

the fringes. To first order, the total fringe-rate response

of the visibility is thus the sum of the fringe-rate re-

sponse of all point sources on the sky (diffuse sources can
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Figure 4. Comparison of the idealized Airy disk model (left column), the CST Vivaldi model of Fagnoni et al. (2020) (center
column), and their ratio (right column). These are the power beams for one particular visibility polarization, where the left
and center column are cast into log10 units, and the right column is a direct ratio. One thing that is very clear, supported by
Figure 11, is the up-weighting of the horizon by the Vivaldi model at low frequencies compared to the Airy disk model.

be thought of roughly as the sum of many independent

point sources). This is demonstrated in Figure 3, repro-

duced from Parsons et al. (2016), showing the fringe-

response on the sky of a 30-m East-West baseline at 150

MHz (top) and the angular velocity of point sources at

different parts of the sky (vectors). The projection of the

two create the direction-dependent fringe-rate response

of the visibility on the sky (bottom), highlighting how

fringe-rate filtering acts to manipulate the field-of-view.

As noted previously, the two beam models explored here

are a CST simulation of the HERA dish and Vivaldi feed

(Fagnoni et al. 2020), as well as an idealized Airy disk

model with a 14-m aperture. A comparison of the power

pattern of these two beams are shown in Figure 4 for a

frequency bin in the low band and mid band.

The overarching goal of this exercise is to determine

where in fringe-rate space the EoR signal occupies,

which tells us the fringe-rate modes we do not want to

filter out. If systematics and foregrounds occupy inde-

pendent fringe-rate modes, then we can enact a fringe-

rate filter to isolate the EoR from systematics. See Kern

et al. (2019) for more details on why we expect cross-

coupling systematics to be slowly time variable.

Here we report on the results of the EoR visibility PSD

using a CST model of the Vivaldi beam from Fagnoni

et al. (2020). Figure 5 shows the PSD of the EoR model

for a handful of HERA baselines of various lengths and

orientations (the array-layout is shown in the upper-left

panel). The majority of the EoR power is sourced along

a “cone” in fringe-rate & frequency space, whose mid-

line increases both with increasing frequency and with

increasing East-West baseline length. This can easily be

understood in both case as the narrowing of the fringes

on the sky, meaning a source moving with fixed angu-
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Figure 5. Simulated PSD of an EoR-like sky signal with the Vivaldi beam model in fringe-rate space for a handful of HERA
baselines (the array layout is shown in the left panel) at two characteristic frequencies (center and right panels). Note that the
peak power shifts to positive fringe-rates based on the projected East-West separation of the baseline: for baselines with no
projected East-West length, the PSD is centered at f = 0 mHz.
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Figure 6. Vertical cuts through the PSD distributions in Figure 5 simulated with the Vivaldi beam at three frequency
channels, showing more clearly the extent in fringe-rate space of the PSD.

lar velocity at a particular point on the sky and time

of night creates a faster moving sinusoid in the visibili-

ties over time. For baselines with little to no projected

East-West length, the PSD of the EoR signal straddles

a fringe-rate of f = 0 mHz. Also plotted are two lines,

which represent a dividing line above which 90% (or

99%, as marked) of the EoR power resides in fringe-rate

space. In other words, if one were to filter out all fringe-

rates below the black line from the data, one would only

attenuate 10% (1%) of the total EoR power in the visi-

bilities.

To take a closer look at these PSD profiles, we can

inspect vertical slices of the PSD at specific frequency

channels. Figure 6 shows this for the Vivaldi beam simu-

lations, showing in more detail the relative extent of the

PSD across various fringe-rates. The noise-like struc-

ture of the PSD is simply due to sample variance on

our estimate of the mean PSD: in other words, if we

were to simulate more draws of our EoR field and av-

erage their PSDs, we would see the noise-like structure

decrease; however, with the amount of simulations per-

formed here, we can get estimates of the integrals of the

PSD that are accurate-enough to set the filtering speci-

fications sought-out by this analysis. Near peak center,
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Figure 7. Simulated PSD of an EoR-like sky signal with the Airy disk beam model in fringe-rate space for a handful of
HERA baselines (the array layout is shown in the left panel) at two characteristic frequencies (center and right panels). Note
that compared to the Vivaldi model, these PSDs are much more compact in fringe-rate space and have less bleed to low and
negative fringe-rates.
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Figure 8. Vertical cuts through the PSD distributions in Figure 7 simulated with the Airy beam at three frequency channels,
showing more clearly the extent in fringe-rate space of the PSD.

one can imagine that the PSD is well-fit by a Gaus-

sian; however, the tails of the distributions show inter-

esting non-Gaussian and asymmetric behavior, which is

driven mainly by the relatively strong negative tails in

the distributions. The strong negative tails of the PSD

distributions are some of the interesting phenomenology

observed specifically in the Vivaldi beam simulations.

Although low-level tails were observed in similar simu-

lations for the HERA Phase I dipole beam model–Figure

6 of Kern et al. (2019)–they were not observed at such

high amplitudes. These tails are particularly large at

very low frequencies (ν < 100 MHz), which is also evi-

denced by the integral bounds given by the black lines in

Figure 5, showing a clear dip in the 99% integral bound

at low frequencies. The consequence this will have

for cross-talk filters is that they will be more

lossy to the EoR signal with a fixed filter width

∆f centered at f = 0 mHz.

To drive home the comparison of the Vivaldi beam

model, we repeat these simulations with an Airy disk

model with a 14-meter aperture. These PSDs are shown

in Figure 7, which are more compact in fringe-rate space

than the Vivaldi model with less power appearing at low

and negative fringe-rates. This is due to the fact that,
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Figure 9. Signal loss specifications for high-pass cross-coupling filters of Vivaldi beam simulations with increasing filter width
(∆f) for baselines of various East-West projection.

100 150 200
 [MHz]

10 3

10 2

10 1

100

fra
ct

io
na

l p
ow

er
 lo

ss

E-W |b| 14.6 m

100 150 200
 [MHz]

E-W |b| 21.9 m

100 150 200
 [MHz]

E-W |b| 29.2 m

100 150 200
 [MHz]

E-W |b| 36.5 m
f=0.2 mHz
f=0.4 mHz
f=0.6 mHz
f=0.8 mHz

Figure 10. Signal loss specifications for high-pass cross-coupling filters of Airy disk beam simulations with increasing filter
width (∆f) for baselines of various East-West projection.

compared to the Airy model, the Vivaldi beam is both

wider and has more power at the horizon where low

and negative fringe-rates in the visibility are sourced,
e.g. Figure 2 of Parsons et al. (2016). Note that the

dip in the 99% power bound at low frequencies is not

observed in the Airy disk model. Inspecting the Vi-

valdi beam model compared to the Airy beam model,

we see that indeed below 100 MHz the Vivaldi model

has a particularly strong response at the horizon, which

is likely responsible for the increase in the low and nega-

tive fringe-rate response at low frequency, and thus also

this dip in the 99% bound.

While Figure 5 helps to give us a visual sense of where

the power of EoR visibilities lies in fringe-rate space,

it doesn’t easily tell us how much signal loss we are

inducing by actually applying a fringe-rate filter (the

90% and 99% lines do tell us this if we filter-out all

fringe-rates below those lines). To better quantify how

a fringe-rate filter attenuates the signal (specifically, a

high-pass fringe-rate filter used for cross-coupling sup-

pression), we can compare the integral of the PSDs with
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Figure 11. Fractional beam areas of the Airy disk (solid)
and Vivaldi beam (dashed) for three distinct annuli centered
at increasing zenith angle, φ. This shows that the Vivaldi
model has more of its fractional total response by the hori-
zon (green) than the Airy model, which explains the wider
footprint in fringe-rate space of its PSD distributions.

and without filtering. Here, we assume that one applies



8 Kern, Dynes, Nhan, Kim, Hewitt, Rath, Fagnoni, de Lera Acedo & DeBoer

400 200 0 200 400
1.0

0.5

0.0

0.5

1.0

1.5

2.0

fri
ng

e-
ra

te
 [m

Hz
]

68.3 MHz
|b| 14.6m

400 200 0 200 400
1.0

0.5

0.0

0.5

1.0

1.5

2.0
68.3 MHz

|b| 29.1m

400 200 0 200 400
1.0

0.5

0.0

0.5

1.0

1.5

2.0
68.3 MHz

|b| 38.5m

400 200 0 200 400
 [ns]

1.0

0.5

0.0

0.5

1.0

1.5

2.0

fri
ng

e-
ra

te
 [m

Hz
]

156.8 MHz

400 200 0 200 400
 [ns]

1.0

0.5

0.0

0.5

1.0

1.5

2.0
156.8 MHz

400 200 0 200 400
 [ns]

1.0

0.5

0.0

0.5

1.0

1.5

2.0
156.8 MHz

10 2

10 1

100

101

|V
| [

Jy
 H

z S
ec

]

10 3

10 2

10 1

100

|V
| [

Jy
 H

z S
ec

]

Figure 12. HERA visibilities (H4C observing season) in delay and fringe-rate space for a handful of East-West baseline groups
in east-east visibility polarization, taken at two characteristic frequency bands (top and bottom panels). We show the amplitude
of the visibilities after redundantly averaging of all physical baselines in each group (roughly a dozen baselines in each group).
The dashed green lines show the baseline horizon with an additional buffer to account for the Blackman-Harris windowing
before taking the Fourier transform. Both the low-band and mid-band show evidence for low-fringe rate emission beyond the
foreground horizon that is particularly strong for shorter baselines. By eye, it seems that high-pass fringe-rate filters with a
∆f ∼ 0.4 mHz will be needed to adequately suppress the low-fringe rate systematics, however, this may be an overestimate as
the windowing was also applied across the time domain as well, which will bleed structures to larger fringe-rates. This may
make fringe-rate filters for cross-coupling systematics at low frequency particularly lossy to EoR signals.

a high-pass filter that suppresses all fringe-rate modes

|f | < ∆f/2. Note that this filter only suppresses low-

fringe rate modes, is symmetric about f = 0 mHz, and

leaves higher fringe-rate modes unaffected. If we inte-

grate the PSDs along the fringe-rate axis with and with-

out such a filter and take their ratio, we can derive the

amount of signal power lost due to the filter. This is

shown for the Vivaldi simulations in Figure 9, where

each panel shows a different baseline of increasing East-

West length, and each line represents a filter with an

increasingly large width ∆f . Note that the amount of

loss is naturally the largest for the largest filter size,

∆f = 0.8 mHz, and that this loss increases at lower

frequencies for all filter sizes and baselines.

If we wanted to set a specification for the most amount

of loss we would be willing to tolerate for a filter (say 1%

power loss), then Figure 9 tells us that at 100 MHz we

can safely apply a ∆f = 0.2 mHz cross-coupling filter.

However, this same filter becomes more lossy below 100

MHz, so to not exceed our tolerance we should use a less

aggressive filter (or not filter at all!). For large baseline

lengths and at higher frequencies, we can boost the size

of the filter ∆f without exceeding our preset tolerance.

We also show these specifications for the Airy disk

simulations in Figure 10. In general we see that for

fixed frequency, baseline, and filter width, the Airy disk

shows less signal loss than the Vivaldi feed. This again

is related to the fact that the Vivaldi feed projects more

EoR power to low and negative fringe-rates than the

idealized Airy beam. However, this also demonstrates

that these specifications are somewhat sensitive to the

model of the primary beam. While it is clear that the

difference between a Vivaldi and idealized Airy beam

are substantial, it is not clear how realistic feed per-

turbations impact these metrics, which we return to in

Appendix A.

To understand why the PSDs of the Vivaldi model

differ from that of the Airy disk model, we said above

that this is due to the fact that, compared to the Airy

disk model, the Vivaldi feed up-weights parts of the sky

near the horizon where low and negative fringe-rates

are sourced in the visibility. First, Figure 2 of Parsons

et al. (2016) shows that low and negative fringe-rates are

sourced near the horizon (for a telescope at HERA’s dec-

lination). Second, Figure 11 plots the fractional beam

area in distinct annuli of increasing zenith angle, φ, nor-

malized by the total integral of the beam. The solid

lines show the Airy disk model, while the dashed lines

show the Vivaldi model. Compared to the Airy disk

model, the Vivaldi model has less of its total response
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Figure 13. Fractional EoR power recovery after coherent LST averaging of the visibilities with increasingly large time windows
for various East-West aligned baseline lengths. The top panels show the Vivaldi beam simulations, while the bottom panels
show the Airy disk beam simulations. To limit signal loss to . 2% across the band, one should coherently average the
visibilities no longer than ∼ 400 seconds.

centered near zenith (blue), but this is compensated by

more of its response sourced near the horizon (green),

whereas midway through the Vivaldi and Airy model

have roughly the same fractional response (orange).

We note that another way to think about the process

of correcting for signal loss induced by a fringe-rate fil-

ter is to view it as a primary beam correction due to

the “sculpting” of the primary beam from the filter. In-

deed, this is how the formalism outlined in Parsons et al.

(2016) would have us view it. In this case, the fringe-

rate filter is not so much of a process by which EoR

signal is lost, as it is a shaping of the primary beam

response, which would naturally be corrected for in the

process of power spectrum normalization (i.e. the Ωpp
term that is the integral of the squared primary beam

response). This is a perfectly natural way of looking

at this process, however, recall that the analytic tools

used in Parsons et al. (2016) to compute the sculpted

beam response are not suitable for HERA baselines due

to a breakdown in the “constant beam” approximation.

Therefore, we would be left to compute it in a similar

manner as is done here, by imaging an ensemble set of

fringe-rate filtered EoR visibilities and taking the av-

erage of their amplitude to converge to the “sculpted”

primary beam response. Although this is a somewhat

more complicated process to achieve what has already

been derived here, it would be necessary, say, for proper

normalization of fringe-rate filtered images.

To understand the kind of fringe-rate filtering neces-

sary for systematic rejection of low-fringe rate system-

atics in HERA, we also show some representative com-

missioning data from the most recent observing season

(H4C; observed October 16, 2020). In Figure 12, show

the Fourier transformed visibility in both fringe-rate and

delay space for a few East-West oriented baselines in

east-east visibility polarization (which shows stronger

systematics than north-north polarization). We also

plot the baseline horizon delay (green dashed) with an

additive delay buffer that accounts for the Blackman-

Harris apodization (or windowing, or tapering) kernel

in delay space (note that BH windowing is also applied

along the time axis before taking the Fourier transform).

We clearly see an excess of low-fringe rate structure be-

yond the foreground horizon, which could be indicative

of cross-coupling systematics. These appear to decrease

in amplitude for larger baseline lengths, which is the

expected behavior of over-the-air reflections (or mutual

coupling). By eye, it appears that high-pass fringe-rate

filters with ∆f ∼ 0.4 may be enough to adequately sup-

press these low-fringe rate systematics, although we pre-

vious signal loss analysis suggests that this may induce

large amounts of loss of the EoR signal at low frequen-
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cies and short baselines.

3. COHERENT TIME AVERAGING SIGNAL LOSS

Here we discuss calculations for the amount of signal

loss induced when coherently averaging different time

(or LST) bins of drift-scan interferometric visibilities.

The “coherent” in coherent LST averaging means we are

averaging the complex visibilities, thus preserving the

phase information. By LST averaging, we mean averag-

ing different but nearby LST bins within the same ob-

serving night. For short time differences, these time bins

will see largely the same sky, and thus after rephasing

the visibilities we can average them together. However,

because the sky has moved (even by a small amount for

truly adjacent time bins), there will be some amount

of decoherence (and thus power loss) when coherently

averaging the visibilities. This is particularly the case

when trying to measure the sky power across a wide

field-of-view, where the fringe rephasing cannot be per-

formed exactly for all points on the sky. Thus, over

longer time differences there will be more decoherence

and thus more signal loss. While we want to perform as

much coherent LST averaging as possible to beat down

thermal noise, there will be a point over long averaging

windows where decoherence (and thus signal loss) will be

too large to tolerate. Again, for averaging the visibility

from a single point source this computation is relatively

straightforward and can be done analytically; however,

for quantifying the signal loss due to an isotropic field

like an EoR signal this is more complicated, and we thus

turn to direct numerical simulation as a test.

The LST averaging scheme we will look at is a simple

scheme, where we scroll down in LST and take all drift-

scan time bins within a specified time window, rephase

them to a common pointing center, take their direct, un-

weighted average, and then move on to the next set of

time bins over the same window. This is not exactly the

same as the optimal fringe-rate filtering discussed in Par-

sons et al. (2016), where one applies a fringe-rate filter

tailored to minimize the error bars on the power spec-

trum. However, one can think of the averaging scheme

we will present as a sinusoidal fringe-rate filter (with a

width equal to one over the time window) with post-

filtering decimation.

To measure the amount of signal loss induced by the

averaging, we take the coherent average of the 24-hour

visibilities independently for each frequency bin and

for four representative East-West baselines over increas-

ingly large time windows. For each set of averaging win-

dows, we square the averaged visibilities and take the

time average of the remaining time bins. We then nor-

malize the result of each of these averages by the power

of the shortest time average window, assuming it is small

enough to induce negligible amounts of loss, which is a

fair assumption for the timescales studied here. This

yields the fractional power recovered by the time av-

eraging, which we show in Figure 13, showing the fre-

quency and baseline dependence of the signal loss. The

top panels show this exercise on the Vivaldi beam sim-

ulations, while the bottom panels show the Airy disk

beam simulations, which interestingly exhibit slightly

more loss for fixed frequency and baseline length. Over-

all, Figure 13 tells us that if we wish to limit signal loss

to, say . 2% in power, then the longest window over

which we can coherently average the visibilities is ∼ 500

seconds.

4. SUMMARY

We have performed numerical simulations of mock

EoR fields with a series of primary beam models for

HERA, including an idealized Airy disk with a 14-meter

aperture, a CST simulation of the Vivaldi feed and

HERA dish, and CST simulations of the translationally-

perturbed Vivaldi feed and HERA dish. We use these to

quantify the amount of signal loss induced when apply-

ing Fourier filters along the time axis of the drift-scan

visibilities, in other words, when enacting various forms

of fringe-rate filters. We quantify the following:

• We first compute the power spectral density (PSD)

distributions of the EoR visibilities in the fringe-

rate domain, showing that, compared to an ideal-

ized Airy disk, the Vivaldi beam model up-weights

more low and negative fringe-rate modes, which

expands the fringe-rate footprint of the PSD. We

also show that 3 cm feed perturbations do not ap-

preciably change these PSDs.

• We then look at cross-coupling high-pass filters,

which reject near-zero fringe-rate modes to sup-

press cross-coupling systematics. We show that

the extended footprint of the Vivaldi beam simu-

lations make such filters more lossy, setting spec-

ifications for the lossiness of cross-coupling filters

as a function of frequency and baseline length.

• We then look at signal loss introduced when co-

herently time (or LST) averaging the drift-scan

visibilities, showing that signal loss can be kept

to . 2% across the band when averaging the vis-

ibilities over a time window no larger than ∼ 500

seconds.

• Lastly, in the appendix, we show how sensitive

these metrics are to slight translation perturba-

tions of the feed position, showing that 3 cm trans-

lational feed perturbations have a negligible im-

pact on our results.
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APPENDIX

Table 1. Perturbed Beam Models

Beam Name X, Y, Z Offset [cm]

base 0, 0, 0

zshift 0, 0, -3

xshift 3, 0, 0

A. THE IMPACT OF PRIMARY BEAM

PERTURBATIONS

Here we look at the impact that slight translational

perturbations to the feed position have on the measured

PSDs of Section 2. This is in theory important be-

cause changes to the primary beam weighting pattern

on the sky will impact the fringe-rate footprint of the

EoR power spectral densities, and thus impact how a

fringe-rate filters interacts with the total EoR power in

the visibilities. A example of this already demonstrated

in this analysis are the large differences seen in the PSD

between the idealized Airy disk model and that of the

fiducial Vivaldi feed model. Here, we seek to understand

how robust the simulated PSD distributions under mi-

nor translational feed perturbations. We look at two

particular perturbations, summarized in Table 1 with a

visual in Figure 2, which are consistent with observed

feed movement in the field (Rath et al. 2021). Figure A.1

shows the directional response of the base beam in the

low and midband, and the difference of the base model

with the perturbed model, showing the kinds of direc-

tional structure sourced by the feed perturbation. Note

that these simulations are performed in three distinct

subbands (65–85, 160–180, and 200–220 MHz), because

the perturbed beams are only available in these bands.

First we look to see how the feed perturbations im-

pact the estimated PSDs. We show slices of the PSDs

at fixed frequencies in Figure A.2, showing the fractional

difference between the xshift model (top panels) and

the zshift model (bottom panels) with the unperturbed

base model for a few East-West baselines. We see that

the fractional difference is generally ≤ 10% between the

base model and the perturbed model. We also compute

the implied signal loss due to a crosstalk high-pass fil-

ter (analogous to Figure 9), and find that the fractional

difference of this metric between the perturbed and un-

perturbed model is always ≤ 1% for all baselines and

frequencies. This suggests that the 3-cm feed perturba-

tions have an overall negligible impact on the PSDs and

the implied signal loss due to crosstalk filtering when

compared to the base model.

Lastly, in Figure A.3, we compare the specifications

derived for the amount of signal loss induced due to

coherent time averaging (analogous to Figure 13). For

the three representative frequencies in the low, mid, and

highband, we show that the 3-cm perturbed beam mod-

els have a negligible impact on the coherent LST average

signal loss specifications. showing that the fractional

difference between the metric for the base model and

that of the xshift model (top panels) and zshift model

(bottom panels) are exceedingly small (≤ 0.1% for all

baselines, frequencies, and integration windows).

Thus, we see that 3-cm translational feed perturba-

tions have an overall negligible impact on all of the met-

rics looked at in this work, although we do not rule out

the possibility that different kinds of perturbations (e.g.

tip and tilt) or larger translational perturbations may

have a larger impact.
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Figure A.1. This shows the base (unperturbed) Vivaldi beam model power response (left) in logarithmic units, and then shows
the difference of the base beam with a x-displaced feed (center) and a z-displaced feed (right), showing the small but non-zero
impact of the primary beam power pattern with such displacements.
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Figure A.2. The fractional difference between the base model PSD and the xshift (top-panels) and zshift (bottom-panels) PSD
at three different frequencies, showing that the fractional difference is generally ≤ 10%. When comparing the expected signal
loss due to high-pass fringe-rate filters from the perturbed PSDs (e.g. Figure 9), we find that they agree with the base model
to within ≤ 1% for all baselines and all frequencies.
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Figure A.3. The same LST averaging signal loss test as Figure 13 but now taking the fractional difference between the base
model and the xshift perturbed Vivaldi beam model (top panel) and the zshift beam model (bottom panels). We see that the
perturbed beam models have a negligible impact on the signal loss metric (≤ 0.1%) for all frequencies, baselines, and integration
windows.


