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Abstract

We develop routines to make sets of separately redundantly calibrated visibilities directly comparable by
solving for degenerate parameter offsets between them. This allows computation of statistics of visibilities
across different days (without the need for absolute calibration) and provides a new way of identifying
and flagging data corrupted by e.g. radio-frequency interference (RFI). The computations are done using
maximum likelihood estimation (MLE) techniques developed previously that allow for robust statistics. The
method appears to be a useful quality assessment step and, in initial application, appears to identify plausibly
bad data not previously flagged.

This memo builds on HERA Memorandum #84 [1], which presents a generalized approach to redundant calib-
ration, with MLE computations accelerated in JAX. The code for the work described in this memorandum can
be found at https://github.com/bnikolic/simpleredcal.

1 Introduction

Redundant calibration is a key step in the processing of Hydrogen Epoch of Reionization Array (HERA) data.
Like the more widely used “self-calibration”, redundant calibration solves for both the visibilities and the gains
of the receiving elements of the interferometer. Unlike self-calibration, the visibilities when doing redundant
calibration are only estimated in the relatively few sampled cells in the UV plane where the redundant baselines
happen to lie. In self-calibration, since the model of the sky is estimated in the image-plane, the technique
effectively estimates the visibility values across the whole UV plane. Consequently, self-calibration benefits
greatly from combining multiple times and frequencies into a single estimate of the sky, as earth-rotation and
bandwidth smearing fill out the coverage of the UV plane.

Since redundant calibration does not gain anything by filling out the UV plane, the incentive to combine mul-
tiple times/frequencies of observations is less immediate. Nevertheless, there are some reasons to compare
redundant calibration estimates of visibilities across different times and frequencies, and potentially eventually
combine the solving so that a single all-encompassing estimate is made based on as much data as possible. The
reasons for this are:

1. Independently solving for the visibility values introduces more degrees of freedom than needed – the sky
visibilities must be exactly equal at the same Local Apparent Sidereal Time (LAST) on different days, and
as frequency channels are made narrower, the visibilities of neighbouring redundant calibration solutions
must converge too. More degrees of freedom typically means a higher possibility of over-fitting and
some loss on signal-to-noise (S/N).

2. RFI introduces a strongly non-Gaussian error into radio observations. Robust estimators of visibilities
and antenna gains are far easier to construct as more data are considered simultaneously.
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In this memorandum, we present a way of comparing redundant calibration visibility solutions at the same
LAST across Julian dates (JDs) to test their stability1, which provides another angle on the quality of the
calibration and the data itself. We further discuss how such results can be used for further flagging.

2 Comparing visibility solutions from redundant calibration

2.1 Degeneracies in redundant calibration

Relative redundant calibration gain solutions are degenerate in the space represented by an overall amplitude
A(ν), an overall phase ∆(ν), and two tilts (or phase gradient components) ∆x(ν) and ∆y(ν) [see e.g. 1]. This
degeneracy applies to each solution interval separately, i.e. each time, frequency and day slot of data, for which
the solver may converge to different parts of this space.

Observed visibilities are affected by A(ν), ∆x(ν) and ∆y(ν); ∆(ν), however, has no influence on the visibilities
at all. When true visibilities are expected to be the same or very similar in a set of slots (e.g. same frequency and
LAST on different days), then the observed visibilities after relative redundant calibration most be consistent
up to a transformation in the A(ν), ∆x(ν) and ∆y(ν) space.

Solving for, or potentially marginalizing, these parameters with an MLE framework enables us to check if these
solutions are consistent, as well as allowing for direct comparison of the visibility solutions.

2.2 MLE to translate between degeneracies

To compare datasets that have been redundantly calibrated, we minimize:
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where
Wα(ν) = A2(ν)ei[∆x(ν)xα+∆y(ν)yα ]Uα (3)

with (xα ,yα) the baseline coordinates of redundant set α , Uα the redundant calibration visibility solutions for
the redundant baseline set indexed by α , and U ′α the set of visibility solutions on a different JD but same
LAST.

The degenerate parameters found from minimizing either Eq. (1) or Eq. (2) can then be used to translate the
visibility solutions of one dataset into the degenerate space of the other, so that both datasets are degenerately
consistent. They can then be directly compared and statistical diagnostics may be run on them.

2.3 Phase gradients

In relative redundant calibration, the degenerate parameters (§2.1) can take any value. This does not affect
the convergence of the calibration but it can prevent convergence of the solver, which reconciles visibilities on
different days. A particular problem encountered is that the phase gradient terms can take on very high values
and vastly differ between adjacent times and frequencies.

1Comparison over adjacent frequency channels and time integrations can also be done with the presented method and code, which
can be used to quantify how visibilities vary over these dimensions.
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To deal with this, when redundantly calibrating the 2nd dataset (U ′α ), we reuse the solutions from the 1st redund-
ant calibration as initial parameters, and introduce the following penalization term:

Ptilt = ∑
i

(
φ
′
i −φi

)2 (4)

where φi are the solved gain phases from the 1st redundant calibration and φ ′i are the gain phases that minimize
− ln(Lrel) [see §1.1 in 1] for the redundant calibration of the 2nd dataset. This penalty term ensures that the
phases, and therefore the tilts, of the 2nd calibration solutions are as close as possible to those from the 1st.

The final expression to minimize in the relative redundant calibration of the 2nd dataset, to ensure consistent
tilts, is therefore:

− ln(Lrel)+Ptilt (5)

Computationally, it is found that constraining tilts in this manner, as well as using cartesian coordinates for the
input parameters (Re and Im components for both visibilities and gains) in relative redundant calibration, is
the fastest, easiest and most reliable method.

3 Implementation

3.1 Fully worked example

The code for comparing a pair of relatively calibrated visibility solutions for a particular frequency and time
slice on separate JDs, and finding the degenerate parameters that translate between, is shown below. As in [1],
we accelerate our computations with JAX. A full example notebook can be found at SimpleRedCal.ipynb.

Here, we use HERA data observed on JDs 2458098.43869 and 2458099.43124, taken from H1C_IDR2.2. We
select frequency channel 605 and the 0th time integration of the 1st dataset, as an example. We only look at the
EE polarization, assume that the noise follows a Gaussian distribution, and neglect the noise contribution (1st

term in Eq. (1)) in MLE calculations (effectively assuming it is uniform across baselines).

We start by loading the 1st HERA H1C_IDR2 dataset.

from hera_cal.io import HERAData
from jax import numpy as jnp
from red_likelihood import doDegVisVis, doRelCal, group_data, red_ant_sep, \
relabelAnts, split_rel_results
from red_utils import find_flag_file, find_nearest, find_zen_file, get_bad_ants, \
match_lst

# Select 1st dataset to relatively calibrate
JD1 = 2458098.43869
chan = 605 # frequency channel
time_int1 = 0 # time integration of 1st dataset
noise_dist = 'gaussian' # assumed noise distribution
coords = 'cartesian' # parameter coordinate system

zen_fn1 = find_zen_file(JD1) # find path of dataset
bad_ants1 = get_bad_ants(zen_fn1) # get bad antennas from commissioning
flags_fn1 = find_flag_file(JD1, 'first') # import flags from firstcal
print('Bad antennas for JD {} are: {}'.format(JD1, bad_ants1))
# Bad antennas for JD 2458098.43869 are: [0 2 11 24 50 53 54 67 69 98 122 136 139]

# Load dataset from uvh5 file to numpy array, with flagging applied
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hdraw1, RedG1, cMData1 = group_data(zen_fn1, pol='ee', chans=chan, tints=time_int1, \
bad_ants=bad_ants1, flag_path=flags_fn1)

# 0 out of 741 data points flagged for visibility dataset
# zen.2458098.43869.HH.uvh5

cData1 = jnp.squeeze(cMData1.filled()) # filled with nans for flags
ants = jnp.unique(RedG1[:, 1:])
no_ants = ants.size # number of antennas
no_unq_bls = jnp.unique(RedG1[:, 0]).size # number of redundant baselines
cRedG1 = relabelAnts(RedG1) # relabel antennas with consecutive numbering

We then load the 2nd dataset on another JD that matches the 1st dataset in LAST

# Select 2nd dataset to relatively calibrate, that matches the LAST of the 1st
JD2 = match_lst(JD1, 2458099, tint=time_int1) # finding the JD_time of the dataset
# that matches the LAST of the dataset used in 1
zen_fn2 = find_zen_file(JD2)
bad_ants2 = get_bad_ants(zen_fn2)
flags_fn2 = find_flag_file(JD2, 'first')

# Find time int in dataset 2 that corresponds to closest LAST to that of dataset 1
hdraw2 = HERAData(zen_fn2)
time_int2 = int(find_nearest(hdraw2.lsts, hdraw1.lsts[time_int1])[1])

# Load dataset from uvh5 file to numpy array, with flagging applied
_, RedG2, cMData2 = group_data(zen_fn2, pol='ee', chans=chan, tints=time_int2, \

bad_ants=bad_ants2, flag_path=flags_fn2)
# 0 out of 741 data points flagged for visibility dataset
# zen.2458098.43869.HH.uvh5

cData2 = jnp.squeeze(cMData2.filled()) # filled with nans for flags

print('Do the visibilities for JDs {} and {} have:\nthe same bad antennas? {}\n'\
'the same redundant grouping? {}'.format(JD1, JD2, (bad_ants1 == bad_ants2)\
.all(), (RedG1==RedG2).all()))

# Do the visibilities for JDs 2458098.43869 and 2458099.43124 have:
# the same bad antennas? True
# the same redundant grouping? True

Relative redundant calibration is now performed on both datasets, with Gaussian assumed noise:

# Relative redundant calibration of the 1st dataset
res_rel1, initp = doRelCal(cRedG1, cData1, no_unq_bls, no_ants, distribution=noise_dist, \

coords=coords, norm_gains=True, return_initp=True)
# Optimization terminated successfully.

# Relative redundant calibration of the 2nd dataset
res_rel2 = doRelCal(cRedG1, cData2, no_unq_bls, no_ants, distribution=noise_dist, \

coords=coords, norm_gains=True, initp=initp, phase_reg_initp=True)
# Optimization terminated successfully.

# Get the relatively calibrated gain and visibility solutions
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res_rel_vis1, res_rel_gains2 = split_rel_results(res_rel1['x'], no_unq_bls, \
coords=coords)

res_rel_vis2, res_rel_gains2 = split_rel_results(res_rel2['x'], no_unq_bls, \
coords=coords)

We now compare the redundant visibility solutions from both of these datasets, again, using Gaussian assumed
noise:

# Translating between relatively calibrated visibility sets
ant_sep = red_ant_sep(RedG1, hdraw1.antpos)
res_deg = doDegVisVis(ant_sep, res_rel_vis1, res_rel_vis2, distribution=noise_dist)
# Optimization terminated successfully.
print('Degenerate parameters are:\nAmplitude = {}\n'\

'Phase gradient in x = {:e}\nPhase gradient in y = {:e}'.format(*res_deg['x']))
# Degenerate parameters are:
# Amplitude = 0.9920773888258738
# Phase gradient in x = -6.344390e-06
# Phase gradient in y = 8.818280e-05

The Re and Im residuals for the above are plotted in Fig. 1. The results if we had assumed Cauchy noise (done
with noise_dist = 'cauchy') are extremely similar.

Figure 1: Normalized residuals, by visibility amplitude, between visibility solutions on JDs 2458098 and
2458099 at LAST 1.3826 for frequency channel 605. The length of the baseline is decreased and the num-
ber of baseline of each type is increased as the baseline type ID is increased. The 14 m and 28 m East-West
baselines are represented by baseline types 2 and 6, respectively. Note that the normalization is done by divid-
ing the residuals by the geometric mean of the redundant visibility amplitude solutions for the two days being
compared.
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3.2 Batch processing

The full relative calibration the datasets can be done with the rel_cal.py script:

python rel_cal.py '2458099.43124' --pol 'ee' --flag_type 'first' --dist 'gaussian'

python rel_cal.py '2458099.43869' --pol 'ee' --flag_type 'first' --dist 'gaussian'

python rel_cal.py '2458098.43869' --pol 'ee' --flag_type 'first' --dist 'gaussian' \
--initp_jd 2458099

In the last command, we impose the tilt constraint from Eq. (4) to ensure that the solutions found have similar
tilts as for JD 2458099. Note that in order to reuse the solutions for JD 2458099, the first two executions must
have ended.

Comparison of two datasets by fitting for the degenerate parameters that translate between their relative redund-
ant calibration visibility solutions can be done with deg_cal.py:

python deg_cal.py '2458098.43869' --deg_dim 'jd' --pol 'ee' --dist 'gaussian' \
--tgt_jd 2458099

Note that adjacent times and frequencies can be compared by specifying 'tint' and 'freq' after the deg_dim
argument, respectively.

4 Results

4.1 Relative redundant calibration

The minimum negative log-likelihoods − ln(Lrel) for the relative redundant calibration of datasets labelled by
JDs 2458098.43869, 2458099.43124 and 2458099.43869, with Gaussian assumed noise, are plotted in the left
column of Fig. 2. We also use the median (over baselines) absolute normalized residual for these solutions,
given by

Rman = med
bls

 ∣∣Vmeas−Vpred
∣∣√

|Vmeas|
∣∣Vpred

∣∣
 (6)

which can be thought of as a goodness of fit measure for this minimization (i.e. the median of the absolute
values of Fig. 1, but for each frequency/time integration slice). These are also shown in the right column of
Fig. 2.

4.2 Comparing visibility solutions

The minimum negative log-likelihoods − ln
(
Ldeg

)
found by degenerate comparison of the redundant visibility

solutions from the HERA dataset labelled by JD 2458098.43869 and the corresponding visibilities that match
in LAST on JD 2458099 (labelled by 2458099.43124 and 2458099.43869, due to a slight offset in time), with
Gaussian assumed noise, are shown in Fig. 3. We further show Rman for this minimization in Fig. 4.

In Figs. 2 to 4, the dark vertical lines correspond to RFI from known bad frequency channels. The negative
log-likelihoods in these plots also decreases as the frequency channel increases; this is due to the natural shape
of visibility solutions whose amplitudes decrease for higher frequencies.

We note a few dark horizontal bars at the upper end of the frequency channels, which indicate that the solver
struggled to reconcile the visibility solutions. These can be traced back to Fig. 2, where these dark horizontal
bars also appear in the redundant calibration of these datasets. The cause of this is most likely intermittent
RFI.
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(a) Minimum − ln(Lrel) for the relative calibration of
HERA dataset labelled by JD 2458098.43869.

(b) Rman for the relative calibration of HERA dataset la-
belled by JD 2458098.43869.

(c) Minimum − ln(Lrel) for the relative calibration of
HERA dataset labelled by JD 2458099.43123.

(d) Rman for the relative calibration of HERA dataset la-
belled by JD 2458099.43124.

(e) Minimum − ln(Lrel) for the relative calibration of
HERA dataset labelled by JD 2458099.43869.

(f) Rman for the relative calibration of HERA dataset la-
belled by JD 2458099.43869.

Figure 2: Minimum − ln(Lrel) (left) and Rman (right) for the relative redundant calibration of visibilities on
JDs 2458098 (between LAST 1.3826 and 1.4288; Figs. 2a and 2b ) and 2458099 (between LAST 1.3528 and
1.4460; Figs. 2c to 2f), [using Eq. (2) in 1]. Note that the penalty term Ptilt has been added in Fig. 2a (see
Eq. (5)) so that tilts are the same as for the visibilities on JD 2458099 at the same LAST. Extreme values have
been clipped.
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Figure 3: Minimum− ln
(
Ldeg

)
for the comparison of visibilities on JDs 2458098 and 2458099 between LAST

1.3826 and 1.4288, using Eq. (1). Extreme values have been clipped.

Figure 4: Rman when comparing between redundant visibility solutions on JDs 2458098 and 2458099 between
LAST 1.3826 and 1.4288, post degenerate translation. Extreme values have been clipped.
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It is important to remember that the negative log-likelihoods in Fig. 3 compares a pair of redundant calibration
visibility solutions: any dark region may be from a fault in either of the JDs being compared. We note that if
this computation is extended to additional JDs, the anchor day is being compared to all other days, therefore
any RFI present in the anchor day will be present in the degenerate comparison negative log-likelihoods. To
avoid having to rely on a good anchor day and computing all possible pairs of comparisons, one can transform
all visibility solutions from all JDs to the same degenerate space, and run statistics on the entire dataset to find
outliers. This is work in progress.

For reference, we show in Fig. 5 the final flagging that is applied on the very same visibility datasets if calibra-
tion is done through the HERA analysis pipeline, which employs hera_cal for its calibration routines.

The results from the degenerate comparison, notably − ln
(
Ldeg

)
and Rman, can be used for further flagging:

we can plot histograms for both of these quantities, separated by the flagging from Fig. 5; in doing so, we
get a feel for the distribution of the data, which consequently indicates a reasonable cut-off value, after which
frequency/time slices should be cast as outliers and flagged (if they haven’t been already). There is, however,
some spectral structure in − ln

(
Ldeg

)
(see Fig. 3) due to the shape of the bandpass. We therefore divide

− ln
(
Ldeg

)
by the smoothed variance for the 14 m baselines σ2

14m calculated from auto-correlations to obtain
a dimensionless quantity that is comparable across frequencies. The histograms for − ln

(
Ldeg

)
and Rman are

plotted in Fig. 6.

We compute σ2
14m by taking the mean of the noise variance for the 14 m baselines (the noise is calculated

using the .std.uvh5 files; see e.g. [2]), sigma-clipping about the median at the 4σ level, linearly interpolating
the sigma-clipped values, and applying a Savitzky-Golay filter with window length of 17 time integrations
and fitting polynomial of order 3 (with negative values set to 1× 10−8), all along the time dimension. This
smoothing is done so that any intermittent high noise do not cancel out high − ln

(
Ldeg

)
values. No smoothing

is done on the frequency dimension: smoothing over frequency is harder, so for the purpose of this study
we do not smooth over it. In addition, bad frequency channels more easily identifiable. The histograms for
− ln

(
Ldeg

)
/σ2

14m and Rman are plotted in Fig. 6.

From Figs. 5 and 6, we find several frequency/time slices that lie above the indicative outlier cut-offs, but that
are not flagged through the HERA pipeline (cf. Fig. 5). We present these slices in Table 1.

We further show the visibility amplitudes and phases for the slices in Table 1 for the redundantly solved 14 m
baseline, as well as for the (12,13) baseline of the raw data, in Figs. 7 and 8.

5 Conclusion

In this memorandum, we showed how a pair of redundant calibration visibility solution datasets, solved through
a generalized MLE framework, can be compared by translating between their degenerate parameters. Through
this comparison, the stability of redundant calibration visibility solutions can be probed, and the negative log-
likelihoods for this comparison (Fig. 3) can be used as a metric for further flagging: certain effects that may
appear as correct calibration solutions may not be present day-to-day, and should be flagged.

We are in the processing of extending this method to compare multiple JDs, although this requires an anchor
JD that sets the tilts, and is computationally expensive: the relative calibration of a single dataset takes ≈ 40
hours using 4 cores and the degenerate comparison a further ≈ 6 hours. We are also looking to speed up this
computation by further optimizing the code and running it on GPUs.

After having run this analysis on the whole of the H1C_IDR2.2, we plan on applying the flagging found through
this method (with both Gaussian and Cauchy assumed noise), on top of the flagging from the analysis pipeline
that uses hera_cal, to then run through PS estimation.

Further down the line, we plan on building a redundant generalized solver to take data across all JDs to find
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Figure 5: Flags from the zen.2458098.43869.HH.smooth_abs.calfits, zen.2458099.43124.HH.
smooth_abs.calfits and zen.2458099.43869.HH.smooth_abs.calfits calibration files, which contain
the final flags from the HERA analysis pipeline, aligned in LAST.

(a) Histogram of − ln
(
Ldeg

)
/σ2

14m. (b) Histogram of Rman.

Figure 6: Histograms of− ln
(
Ldeg

)
/σ2

14m and Rman, separated by the final set of flags from the HERA pipeline
(see Fig. 5), for the comparison of redundant visibility solutions on JDs 2458098 and 2458099 between LAST
1.3826 and 1.4288, through degenerate translation. Outliers, − ln

(
Ldeg

)
/σ2

14m > 9.8× 10−5 and Rman > 0.2,
are grouped and represented as single columns (n.b. the y-axis range of Fig. 6b has been limited; the count for
the flagged upper outliers is 4885).
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(a) Redundantly calibrated visibility amplitude for the 14 m
East-West baseline on JD 2458098.

(b) Redundantly calibrated visibility phase for the 14 m
East-West baseline on JD 2458098.

(c) Redundantly calibrated visibility amplitude for the 14 m
East-West baseline on JD 2458099.

(d) Redundantly calibrated visibility phase for the 14 m
East-West baseline on JD 2458099.

Figure 7: Redundantly calibrated visibilities for the 14 m East-West baselines for JDs 2458098 and 2458099
between LAST 1.3826 and 1.4288. The outliers from Table 1 are circled. Note that the jump in visibility phases
in Figs. 7b and 7d at time integration 22 corresponds to the point at which redundantly calibrated visibilities
from datasets labelled by 2458099.43124 and 2458099.43869 have been concatenated. Extreme values for the
visibility amplitudes have been clipped.
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(a) Raw visibility amplitude for baseline (12,13) (14 m
East-West) on JD 2458098.

(b) Raw visibility phase for baseline (12,13) (14 m East-
West) on JD 2458098.

(c) Raw visibility amplitude for baseline (12,13) (14 m
East-West) on JD 2458099.

(d) Raw visibility phase for baseline (12,13) (14 m East-
West) on JD 2458099.

Figure 8: Raw visibilities for the 14 m East-West baseline between antennas 12 and 13 for JDs 2458098 and
2458099 between LAST 1.3826 and 1.4288. The outliers from Table 1 are circled. Extreme values have been
clipped.
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Channel
Time

integration
− ln

(
Ldeg

)
/σ2

14m
/10−6

Rman

/10−2
− ln

(
Ldeg

)
/10−3 σ2

14m

311 1 9.823 7.557 5.919 60.258

322 51 9.933 9.661 5.807 58.455

328 19 10.663 8.481 6.165 57.814

334 37 9.870 10.154 5.630 57.036

339 36 9.963 10.111 5.595 56.157

354 4 9.988 9.100 5.527 55.340

908 31 1.244 20.055 0.049 39.733

910 44 1.407 20.712 0.054 38.447

Table 1: Potentially bad frequency/time slices found from Fig. 6. The outlier cut-offs in this study were chosen
ad hoc to be − ln

(
Ldeg

)
/σ2

14m > 9.8× 10−5 and Rman > 0.2. We colour in red the values that are beyond the
set cut-offs. The time integration is that for zen.2458098.43869.HH.uvh5. We note that these slices do not
exceed the cut-offs by significant amounts. Further work is required to see if flagging these slices improve the
calibration and/or power spectrum (PS) estimation.

a single set of visibility solutions for any LAST, which will give the best location and scale estimates for
visibilities. This will be computationally expensive, but will be faster than running redundant calibration on
all the individual datasets. Machine learning (ML) software and accelerated hardware will also speed this
up.
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