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1 Introduction

This memo focuses on the systematics originated from cable reflections in the signal chain

of an antenna, and investigates how this form of instrumental systematics contaminates

the signals occupying high delay modes by performing various statistical tests.

When signals are transmitted forward along the signal chain, part of the incident signal

will be reflected back if there is an impedance mismatching between the transmitting and

receiving surfaces in the cable. This creates a copy of the foreground signal at a discrete

delay dominated by EoR signals and thermal noise. The amplitude of the reflected signal

will typically be a fraction of the incident signal amplitude. For example, Figure 1 showed

a clear cable reflection feature at around 1000 ns in a power spectrum due to reflections

in the 150-meter coaxial cable connecting the antenna and the amplification module.

Figure 1: Power spectrum with prominent systematic features of cable reflections in the
coaxial cable between antenna and post-amplifier.

HERA Memo #093
Received 3 Feb 2021



2 Distribution models for high delay detections

A probability density function (PDF) describing the distribution of the real part of the

power for noise signal was derived and fitted to high-delay signals from power spectra with

different prominence of reflection systematics. The derived distribution was compared

with a Gaussian distribution by measuring the goodness-of-fit using Kolmogorov-Smirnov

test (KS test). The high delay region was roughly defined to be above 1500 ns. We

investigated signals there since the systematic tail extends over the high delays where

EoR signals and thermal noise occupy.

2.1 Data and model selection

Normality of high delay detections was examined by fitting a Gaussian distribution to

signals in an auto-baseline power spectrum with clear cable reflection features and another

without clear features. The Gaussian distribution was fitted to the real part of the power

at delays between 2000 ns and 4000 ns in each power spectrum. Note that the power we

fitted to was before averaging by time or frequency.

Power in auto-baseline delay spectrum is proportional to the square of absolute value

of visibilities in delay space. If we assume the visibilities to be random noise with zero

mean value, then the power is not expected to be Gaussian distributed since it is now

proportional to the product of two complex random variables. Therefore, besides fitting

the Gaussian distribution to high-delay power, we also fitted the data with the probability

density function (PDF) prCNN (P ) of the real part of the product of two complex Gaussian

distribution (see derivation in Section 6.1):

prCNN (P ) =

1

�

e

� 2|P |
�

, (1)

where P is the real part of the power, the parameter � is the standard deviation of P

and CNN represents the complex double normal distribution. During the derivation, we

have assumed that the variances of visibilities of the two baselines forming one power

spectrum are the same. We then fitted the CNN distribution to the power at delays

between 2000 ns and 4000 ns.
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KS tests were performed for each fit with data in each power spectrum in order to

measure the goodness of fit. The KS test finds the maximum absolute distance (D)

between two cumulative distribution functions (CDFs). For example, if we want to test

for the normality of data, the two CDFs will be a given empirical CDF and a normal

CDF. If the test statistic is greater than a critical value, the null hypothesis (the data

follow a proposed distribution) will be rejected. Another way to interpret the test result

is to compare its p-value, which is the probability of observing a test statistic as large as

what we found if the null hypothesis is true. If the p-value is smaller than the significance

level, the null hypothesis will be rejected.

2.2 Fitting results

Figure 2 showed two power spectra with different prominence of reflection systematic

features and the CDFs of models fitted to the power at high delays. For both pairs of

baselines, the discrepancy between the data CDF and the Gaussian distribution CDF with

fitted parameters plugged in is greater than the discrepancy for the CNN distribution

fit. Figure 3 showed the KS test statistics for fitting with each distribution.

The KS tests reject the hypothesis that the data follow a Gaussian distribution at the

5% level for either pair of baselines, while the KS test statistics accept the hypothesis

that the data are CNN distributed for both pairs. In other words, signals at high delays

do not follow a normal distribution but a CNN distribution regardless of the prominence

of cable reflection features in the power spectrum.

We also fitted both distributions to the high-delay signals after subtracting a system-

atic model and performed KS tests (see Figure 3 and Figure 11 in appendix for plots

of CDFs and KS test statistics before and after systematic model subtraction). The KS

test result for the Gaussian fit suggests that the null hypothesis is still rejected after sub-

tracting the systematic model. As for the CNN distribution, the null hypothesis remains

to be accepted, and the model fitted slightly better to the data with systematic model

subtracted as the KS test statistics decreased by 0.34% after subtracting the systematic

model for this particular pair of baselines.
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Figure 2: Two auto-baseline power spectra (top row) with different prominence of sys-
tematic features. Normalized histogram of real part of the power taken from the boxed
region was fitted with the probability density functions of the proposed models. The
CDFs of the fitted Gaussian (middle row) and CNN (bottom row) distributions were
plotted along with the data CDF to measure the goodness-of-fit using KS tests.

Figure 3: KS tests for fitting the Gaussian distribution (left) and the CNN distribution
(right) to the power at delays 2000 - 4000 ns in Figure 2.
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2.3 Baseline-averaged KS test statistics

Multiple pairs of baselines with clear reflection features shown in their power spectra were

selected in order to see the change in goodness-of-fit for data with different sizes. Powers

at different ranges of delays from each spectrum were fitted with the CNN distribution.

The KS test statistics for the fittings were averaged by baselines and plotted as a function

of data size in Figure 4 along with the baseline-averaged KS test statistics for fittings to

the data from multiple power spectra without clear reflection features.

Figure 4 showed that the standard error of the average KS test statistics for power

spectra with clear reflection features are generally greater than those for power spectra

without clear reflection features. This suggests that the consistency of getting a good fit

for high-delay signals from a power spectrum with clear reflection features is less than

from one without clear features.

Besides, when the sample size is small, i.e., data selected from a narrow range of

delays, the goodness-of-fit depends less on the prominence of cable reflection features

appeared in power spectrum. As we prolong the range of delays by fixing the lower

limit while increasing the upper limit of the delays, the power spectrum with clear cable

reflection features generally unexpectedly fits better with the CNN distribution. This

was further discussed in Section 3.2 where we showed the baseline-averaged KS test

statistics of fittings for null tests.

2.4 Noise estimation

In order to obtain the standard deviation � in the PDF of the CNN distribution, we can

directly fit the PDF to the data (Section 2.1) and get an empirical standard deviation

�

e

. We can also predict it using noise estimation in frequency space. Let the predicted

standard deviation be �

p

.

The prediction of �
p

involves three steps. The first step is to estimate the variance of

the noise �

2
n

for baseline formed by antennas i and j in frequency space using Equation

2:

�

2
n

=

V

ii

V

jj

Bt

, (2)

where V

ii

and V

jj

are auto-correlation visibilities in frequency space, B represents the
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Figure 4: Baseline-averaged KS test statistics for CNN fittings with high-delay data of
different widths of delay from multiple power spectra without (green) and with (red) clear
systematic features of cable reflections.

channel width and t is the integration time. The second step is to compute the variance

�

2
ñ

of the noise after being Fourier transformed into delay space. This was done using

the Parseval’s theorem, which connects the sum of the square of a function with the sum

of the square of its transform. Equation 3 shows the Parseval’s theorem for the discrete

Fourier transform.
N�1X

n=0

|x[n]|2 = 1

N

N�1X

k=0

|X[k]|2, (3)

where X[k] is the discrete Fourier transform of function x[n] both of length N . Since

the mean value of the independent random noise is zero, the variance is the sum of the

square of the noise. We therefore derived Equation 4 to compute the variance of noise in

delay space:

�

2
ñ

= N �

2
n

. (4)

The last step is to estimate the standard deviation of the power �

p

. We have assumed

that the standard deviation of the power in auto-baseline power spectrum of noise is the

square of the standard deviation of visibilities in delay space. The standard deviation of
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Figure 5: Minimum and maximum values of the standard deviation of time-averaged noise
power predicted by auto-correlation visibilities, and the logarithm of the posterior prob-
ability function of the empirical standard deviation from fitting the CNN distribution
to high-delay signals.

the power before normalization is

�

p

=

s✓
�

2
ñ

B

full

◆2

, (5)

where B

full

is the width of the full band.

The predicted �

p

is an array of values of standard deviation estimated from auto-

correlated visibilities at each frequency in the band. We chose the minimum and the

maximum values, and compared with the logarithm of a posterior probability function

of the empirical standard deviation �

e

with a Gaussian PDF of �
e

as a prior. Figure 5

shows the log of the posterior probability function (green parabola), the maximum and

minimum values of predicted �

p

. The probability function of the empirical � falls inside

the predicted region, thus �

e

and �

p

agree with each other to a certain extent.

3 Null tests for consistency in high delay signals

Null tests compute the difference between two data sets and show they are identical when

the difference is zero. We constructed null tests between power spectra with different

prominence of reflection features to determine the consistency between the data.
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3.1 Modelling null test distribution

The null test was constructed between high-delay signals in the power spectra (without

averaging by time or delays) formed from the baseline pairs [(83, 84), (83, 84)] (blp1) and

[(66, 67), (66, 67)] (blp2). We also took the difference between data from the same delay

range of the power spectra formed from blp1 and another pair of baselines [(37, 38), (37,

38)] (blp3). Among the three pairs, only blp2 has prominent features of cable reflections

in its power spectrum. The Gaussian distribution was fitted to the difference signals for

each group of baseline pairs. Since the difference signal is the difference between the real

part of two complex double normal distributions, we also derived a PDF pr�CNN for this

distribution of differences (see derivation in Section 6.4):

pr�CNN (�P (k)) =

1

2�

2
e

� 2|�P (k)|
�

(� + 2|�P (k)|), (6)

where � is the standard deviation of the differences between two power spectra, �P (k)

is the difference between two power values and �CNN represents the distribution of the

difference between two complex double normal distributions.

The above process was repeated for data taken from three groups of power spectra in

order to obtain a more generalized statement of the consistency as well as the goodness of

fit in terms of sample size. Group1 contains 11 power spectra with clear cable reflection

features and Group2 contains 11 power spectra without clear cable reflection features.

Group3 contains the same 11 power spectra in Group 2 but shifted by one index, for

example, if group2 = [ps1, ps2, ..., ps11], then group3 = [ps11, ps1, ..., ps10]. Put another

way, the aforementioned blp1, blp2 and blp3 correspondingly represent one of the baseline

pairs that forms the power spectra in group1, group2 and group3. The null tests were

performed between the data of different sizes taken from power spectra in Group1 and

Group2, and between data from power spectra in Group2 and Group3. Just like obtaining

the average test statistics described in Section 2.3, we calculated the baseline-averaged

KS test statistics for null tests and plotted it as a function of the data size.

8



3.2 Results and Discussion

Figure 6 showed power spectra of the three pairs of baselines mentioned in Section 3.1,

and the CDFs of the differences from null tests fitted with a Gaussian distribution and

the �CNN distribution described in Equation 6. From the plots of CDFs, one can

observe that the systematic features do not affect the high-delay signals significantly by

comparing the CDFs of differences from the two null tests. It is also visually apparent

that the �CNN distribution fits better to the differences than the Gaussian distribution.

The KS test statistics in Figure 7 provided a more detailed comparison between the

goodness of fit for both distributions. At a 5% level of significance, the distribution of

differences between either pair of power spectra does not differ from the given distribu-

tions. Recall that the KS test reports the maximum difference between the two CDFs, the

smaller KS test statistics for fitting with the �CNN distribution show that it is a better

model for the differences between two power spectra at high delays than the Gaussian

distribution. Since we have assumed that the mean is zero while deriving the �CNN

distribution and the differences fit well to a zero-mean distribution, the two data sets in

one null test are statistically the same at a 5% significance level.

Figure 8 showed the baseline-averaged KS test statistics of fitting the �CNN dis-

tribution to the null tests between high-delay data of different sizes taken from power

spectra in group1 and group2, and between data from power spectra in group2 and

group3. Unlike the baseline-averaged statistics in Figure 4, when we increases the data

size by prolonging the delay range, some of the null tests involving data from power

spectrum with clear systematic features fit worse with the �CNN model than the null

tests between data from power spectrum without clear reflection features. Nevertheless,

overall there is no significant difference found in the fitting of null tests for power spectra

with different prominence of cable reflection features.

4 Model comparison with different sample sizes

We sampled a relatively large amount of data from the power spectrum in Section 2

and the KS tests rejected the Gaussian model but accepted the CNN model. If we
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Figure 6: Power spectra in column (a) were formed from blp1 (top row) and blp2 (second
row). Power spectra in column (b) were formed from blp1 (top row) and blp3 (second
row). Note that only blp2 power spectrum shows clear cable reflection features. The
null test were performed between real part of the power in the boxed region of the power
spectra in the same column, and the CDFs of the fitted Gaussian distribution (the third
row) and the �CNN distribution (bottom row) were shown along with the data CDF.
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Figure 7: The KS test statistics shows goodness of fit in Figrue 6 at a 5% level of signifi-
cance. Blue points correspond to the test statistics of comparing the Gaussian distribution
with the distribution of differences between blp1 and blp2 (left) or the distribution of dif-
ferences between blp1 and blp3 (right). Orange points correspond to the test statistics
of comparing the �CNN distribution with the distribution of the differences from null
tests.

Figure 8: Baseline-averaged KS test stats for �CNN fittings to null tests between high-
delay data of different widths of delay from multiple power spectra without (green) and
with (red) clear systematic features.
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decrease the size of sampled data, will we still reach the same conclusion? We can ask

the same question for the goodness-of-fit test of differences in Section 3 – the KS tests

accepted both models, but would it be possible that it could reject one of the models

when we increase the sample size? In other words, we wanted to know how robust the

KS goodness-of-fit test is for model selection in terms of the sample size.

Due to the lack of information for true distribution of the data, we need another

approach to hypothesis testing and the Bayesian model comparison was chosen here. We

compared two models M1 and M2 with parameters ✓1 and ✓2 correspondingly based on

an observed data set D by computing Bayes factors K given by

K =

Pr(D|M1)

Pr(D|M2)
=

Pr(M1|D)

Pr(M2|D)

Pr(M2)

Pr(M1)
, (7)

where Pr(D|M
i

) is a likelihood function, Pr(M
i

|D) is the posterior probability and Pr(M
i

)

represents a prior probability of M
i

. If we assume the two models are equally probable,

the ratio of the priors will be 1 and Bayes factor will then be the ratio of the posterior

probabilities of the two models. If K is greater than one, the probability of getting the

data given M1 is greater than that given M2.

The Schwarz information criterion (SIC) is a reasonably good approximation to the

logarithm of Bayes factor and it can avoid the introduction of priors [1]. The Schwarz

criterion S is defined as

logB ⇡ S = ln(

ˆ

L1)� ln(

ˆ

L2)�
1

2

(d1 � d2) ln(n),

where ˆ

L

i

is the maximized value of the likelihood function of the model M
i

, n represents

the sample size and d

i

corresponds to the number of parameters estimated by the model.

Once we have estimated the logarithm of the Bayes factor (S), we compare 2S with a

scale of interpretation. For instance, a value of 2S greater than 10 means that M1 is more

strongly supported by the data than M2 in Equation 7.

Figure 9(a) showed the model comparison between models fitted to the power values

at high delays for blp2 after systematic model subtraction. The Bayes factors and KS

tests for the fitting of the real part of power values generally agree with each other. Both
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Figure 9: Model comparison between the Gaussian distribution and each of the two
derived distributions fitting to the data with different sample sizes. The data are (a) the
real part of blp2 power values at high delays (left column), or (b) the differences from
the null tests between blp1 and blp2 (right column). Recall only blp2 has clear cable
reflection features in the delay spectrum. Interpretation key: the Gaussian model is less
preferred when 2S is greater than the strong evidence line (dotted lines in top-row plots);
the null hypothesis (no differences between the data CDF and the model CDF) is rejected
when the KS-test stats are greater the critical values (dotted lines in bottom-row plots).
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show that the CNN model is more strongly supported by the power values than the

Gaussian model even when the sample size is relatively small.

Figure 9(b) showed the model comparison between models fitted to the differences

between high-delay power values of blp1 and blp2 mentioned in Section 3.1 after system-

atic model subtraction. Only the Bayes factors of comparing the Gaussian model with

the �CNN model show that the later is more strongly supported by the data when the

data was taken at a delay range greater than 1205 ns. However, the KS test only provides

a stable preference between the two models for the data from a delay range greater than

2048 ns. Thus, we can see that the Bayes factor is a more robust model comparison

method than the KS goodness-of-fit test.

5 Conclusion

Statistical tests were performed in order to investigate to what extent the reflection sys-

tematics affect high delay detections. We constructed null tests between power spectra

with different reflection feature prominence, and found the null tests failed to provide

strong enough evidence to support the statement that cable reflection systematics con-

taminate the high delay region significantly. We also derived two distributions to describe

the real part of the power for noise signals and their differences. KS tests and Bayes factor

estimation showed that both derived models fitted better to high delay detections than

Gaussian distributions regardless of the prominence of reflection features in the power

spectrum, and the Bayes factors give a more stable preference in model selection than

the KS goodness-of-fit tests.

References

[1] Robert E Kass and Adrian E Raftery. Bayes factors. Journal of the american statistical

association, 90(430):773–795, 1995.

[2] M Sanders. Characteristic function of the central chi-squared distribution. Technical

report, Retrieved 2009–03-06, 2009.

14



6 Appendix

6.1 Deriavation of Eq.1

Suppose N1
1 and N2 are two complex Gaussian random variables with zero expectation

such that

n1 = a1 + ib1

n2 = a2 + ib2,

where a1, a2, b1, b2 are real coefficients and the letter i denotes
p
�1. We wish to compute

the distribution of the real part of N1N
⇤
2 . We have

n1n
⇤
2 = (a1 + ib1)(a2 � ib2)

= a1a2 + ia2b1 � ia1b2 + b1b2

= a1a2 + b1b2 + i(a2b1 � a1b2),

and its real part is

Re{n1n
⇤
2} = a1a2 + b1b2.

Then, product distribution we want to find becomes the joint distribution of A1A2 and

B1B2. Since A1, A2, B1, B2 are Gaussian random variables, A1A2 and B1B2 have the same

probability density function (PDF). Here, we compute the distribution of A1A2. We have

a1a2 =
1

4

[(a1 + a2)
2 � (a1 � a2)

2
]

⌘ 1

4

(a

0
+
2 � a

0
�
2
)

⌘ 1

4

u.

1
We represent variables by capital letters, X, while lower-case letters, x, denote specific instances of

a variable.
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Similarly, we have b1b2 =
1
4v. Let m denote u+ v, then

Re{n1n
⇤
2} =

1

4

u+

1

4

v =

1

4

m. (8)

We first compute the characteristic function of U and V , and then use convolution theo-

rem to find probability function of M .

Let probability functions of U and A

02
± be p

U

(u) and p

A

02
±
(a

0
±
2
= x) respectively, we

then have

p

U

(u) =

Z 1

�1
p

A

02
+
(u+ x) · p

A

02
�
(x)dx (9)

We can represent p
A

02
±
(x) by their corresponding inverse Fourier transformed characteristic

function p̃

A

02
±
(k):

p

A

02
±
(x) =

Z 1

�1

dk

2⇡

e

�ikx

p̃

A

02
±
(k). (10)

Substituting Eq.(10) into Eq.(9) with proper change of Fourier space variables gives

p

U

(u) =

Z 1

�1
dx

dk

2⇡

dq

2⇡

e

ik(u+x)
p̃

A

02
+
(k)e

iqx

p̃

A

02
�
(q)

=

Z 1

�1
dx e

i(k+q)x

Z 1

�1

dk

2⇡

dq

2⇡

e

iku

p̃

A

02
+
(k) p̃

A

02
�
(q)

= 2⇡ �(k + q)

Z 1

�1

dk

2⇡

dq

2⇡

e

iku

p̃

A

02
+
(k) p̃

A

02
�
(q)

=

Z 1

�1

dk

2⇡

e

iku

p̃

A

02
+
(k)

Z 1

�1
dq p̃

A

02
�
(q) �[q � (�k)]

=

Z 1

�1

dk

2⇡

e

iku

p̃

A

02
+
(k) p̃

A

02
�
(�k).

However,

p

U

(u) =

Z 1

�1

dk

2⇡

e

iku

p̃

U

(k),

then,

p

U

(u) =

Z 1

�1

dk

2⇡

e

iku

p̃

U

(k) =

Z 1

�1

dk

2⇡

e

iku

p̃

A

02
+
(k) p̃

A

02
�
(�k),
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and thus

p̃

U

(k) = p̃

A

02
+
(k) p̃

A

02
�
(�k). (11)

Since A1 and A2 are Gaussian distributions, their linear combination A

0
± = A1±A2 is also

a Gaussian distribution. Then, by definition of chi-square distribution, the distribution

of A02
± is a �

2 distribution with 1 degree of freedom. The characteristic function of a �

2

distribution p̃

A

02
±
(±k) is

p̃

A

02
±
(±k) =

1p
1⌥ i2�

2
±k

, (12)

as proved by [2], where �± is the standard deviation of distribution A

0
±. Assuming

�+ = �� (� will not have the same unit as �± if they have units) and substituting (12)

into (11) gives

p̃

U

(k) =

1p
1� i2�

2
+k

1p
1 + i2�

2
�k

�⌘�+��
=

1p
1 + 4�

2
k

2
, (13)

where � is the standard deviation of distribution A

02
±. Now, we can compute the probabil-

ity function of M by first computing its characteristic function and then inverse Fourier

transforming it to the real space. To get the characteristic function, we square Eq.(13),

since 1) we find the joint distribution between U and V by convolving their PDFs, 2) the

Fourier transform of a convolution of two PDFs is the pointwise product of their Fourier

transforms, which is their corresponding characteristic functions, and 3) Eq.(13) is the

characteristic function for both U and V . Thus, squaring Eq.(13) gives

p̃

M

(k) =

✓
1p

1 + 4�

2
k

2

◆2

=

1

1 + 4�

2
k

2
. (14)

We then inverse Fourier transform the above characteristic function to get its probability

function p

M

(m).

p

M

(m) =

Z 1

�1

dk

2⇡

e

ikm

1

1 + 4�

2
k

2
=

1

4�

e

� |m|
2� (see proof in Section 6.4). (15)

Recall Eq.8, there is a coefficient in front of m. We thus modify Eq.15 to get the proba-
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bility function of N1N
⇤
2 :

p

N1N
⇤
2
(x) =

1

1
4

⇥ p

M

✓
m

1
4

◆
=

1

�

e

� 2|x|
�

. (16)

Eq.16 is normalized since

Z 1

�1
p

N1N
⇤
2
(x) dx =

Z 1

�1

1

�

e

� 2|x|
�

dx = 1.

Therefore, the PDF f(x) of Re{N1N
⇤
2} distribution is

f(x) =

1

�

e

� 2|x|
�

.

6.2 Proof for Eq.15

We prove Eq.15 by Fourier transforming the resulting function. We define f(x) as

f(x) = p

M

(m = x) =

1

4�

e

� |x|
2�
.

Fourier transforming f(x) gives

˜

f(k) =

Z 1

�1
f(x) e

�ikx

dk

=

Z 1

�1

1

4�

e

� |x|
2�

e

�ikx

dk

=

1

4�

✓Z 0

�1
e

x

2�
e

�ikx

dk +

Z 1

0

e

� x

2�
e

�ikx

dk

◆

=

1

4�

 
e

x

2��ikx

1
2� � ik

�0

�1
+


e

� x

2��ikx

� 1
2� � ik

�1

0

!

=

1

4�

✓
1

1
2� � ik

+

1

1
2� + ik

◆

=

1

4�

"
2
2��

1
2�

�2
+ k

2

#

=

1

4�

⇥
2
2��
1
2�

�2 ⇥ 1

1 + 4�

2
k

2

=

1

1 + 4�

2
k

2
= p̃

M

(k).
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6.3 Plots of CDFs and KS test statistics of high-delay signals

before and after systematic subtraction

Fig.10 and Fig.11 show fittings for the power spectra of an auto-baseline pair with cable

reflection features before and after subtracting a systematic model and KS test statistics

for the goodness of fit.

Figure 10: Power spectra (top row) formed from a baseline pair with cable reflections.
High-delay signals in the boxed region were fitted with a Gaussian distribution (middle
row) and a CNN distribution (bottom row) for power spectrum before (left column) and
after (right column) subtracting the systematic model.

6.4 Derivation of Eq.6

Let D0 be the difference between 4Re{N1N
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Figure 11: KS tests for normality (left) and the CNN distribution fitting results (right)
of the power at delays 2000 - 4000 ns.

(Eq.14).
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Eq.19 is normalized since
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