
HERA H1C Shadow Pipeline Validation Test #1

Matthew Kolopanis1 and Daniel Jacobs2

1,2School Of Earth and Space Exploration, Arizona State University, Tempe, AZ

January 22, 2021

Abstract
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As part of a larger effort to build confidence in the HERA pipeline we are undertaking a parallel
or “shadow” analysis. Here we limit our analysis to calculating a power spectrum from calibrated
data. This parallels work by the HERA Power Spectrum and Statistics teams and uses outputs
from the Analysis and Validation groups. Further discussion of this approach is described in a
previous memo (D. Jacobs May 2020), attached below for your reference. That memo laid out the
terms of this test. The point, to put it sharply, is rehearse the statistical and philosophical business
of detecting a cosmological background when we don’t know the answer.

The simulations were generated using the simulation pipeline developed by the HERA Valida-
tion team. These simulations include a noise model, a sky model, interference flagging (but not
interference itself), and systematics all simulated to match the recorded 2017-2018 H1C observing
season running to some dozen nights of data. This large dataset was then input into the HERA cal-
ibration and averaging pipeline to produce a single LST-binned dataset. Five of these simulations
were produced for our purposes:

0.1 A known input power spectrum with no noise.

1.1 Foregrounds, noise, no EoR and systematic filtered

1.2 Foregrounds, noise, an unknown EoR and systematic filtered

1.3 Foregrounds, noise, no EoR

1.4 Foregrounds, noise, an unknown EoR

This memo details the results from the SIMPLEDS shadow pipeline test 1. Test 0 established
that in the absence of any complications like foregrounds, noise, or flagging we are able to recover
an eor power spectrum to within 50%, which is acceptable in comparison to our goal of 100ppm
foreground removal. Each of the four sets is given a parallel analysis. We check our understanding
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of the expected systematics and noise level, compare theoretical and bootstrapped error bars, and
make a power spectrum estimate.

Each of the four sets were analyzed in parallel. All four analysis notebooks are attached at the
end of the document.

Though our aspiration was to maintain a strict veil around the shadow analysis, in practice
some exchanges were required. We attempted to limit our discussion to specific points, like LST
and frequency range selection, the weighting scheme used in the average and the meaning of flag
and sample counts in the files. These are documented below by reporting the results of our initial
round of analysis with minimal communication and a second one after resumption of talks.

As of this writing on 30 Nov 2020, we (DCJ and MK) maintain our ignorance of the final answer
as to the true contents of the test sets and the level of cosmological signal injected therein. We have
not read the relevant paper sections and have excused ourselves from discussion of those sections
during paper discussion.

1 Initial Independent Analysis

In our first analysis we took delivery of four simulations generated by the Validation team according
to the May 2020 memo. The files were scrubbed by changing the filenames and removing all history
information. They are named Sets 1-4.

This section reports our first attempt at a hidden value analysis which was reported to the
Validation team on 4 Nov 2020. Some figures have since been updated to reflect bug fixes motivated
by later self consistency checks. These are noted with a Bias Warning like this. This is
discussed more in subsection 2.1.

1.1 Input Data

The data consists of 10.7s integrations binned into 21.4s wide LST bins. We coherently average,
using built-in pyuvdata tools, to generate a 5 min integration per sample.

1.2 Data selection

There are a number of analysis choices, most having to do with selection of data subsets. Our
choices here are made to mimic the mainline HERA power spectrum pipeline as closely as possible,
except where limited by the SIMPLEDS methods. Here are the selection ranges:

• No baseline with a projected length less than 14.6m are analyzed

• No same-baseline multiplications are used.

• Times are broken into two interleaved sets to mitigate noise bias.

• Lsts in the ranges [1, 2.7] and [4.5, 6.5] are analyzed

• Nominal spectral windows (in frequency channel): [175, 335] and [515, 695] are made “square”
by trimming the higher range to [520, 680]

The spectral windows referenced above are illustrated in Figure 1. As mentioned above, nominal
spectral windows for HERA power spectrum estimation are not “square” but SIMPLEDS requires
“square” spectral windows for each redshift bin. This change is also made for simplicity when using
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Figure 1: The two spectral windows used in the analysis.
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Figure 2: Three baselines representing the redundant groups used in this analysis

the SIMPLEDS object. They are selected to span regions with the most occupancy of data during
LST binning and minimum flag occupancy.

The main limitation imposed by SIMPLEDS is in its simplistic approach to averaging in uv.
SIMPLEDS is designed to operate on only one set of redundant baselines at a time. As a result,
three separate analysis chains are analyzed in tandem to estimate the delay spectra from the baseline
groups illustrated in Figure 2.

1.3 Error propagation

We estimate error bars in three ways, all of which discussed and developed in Kolopanis et al.
(2019). First we ground our analysis by comparing to theoretical estimates of the type used to
predict the sensitivity of the array. Second we give ourselves a reference with a noise data set
which is processed in parallel with the data. This is useful as a check for our primary error bar
estimation with a bootstrap sampling. Third, we estimate the actual variance in data samples with
a bootstrap resampling.

The noise simulation is based on the variance observed in the LST binned data. A difference is
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Figure 3: Bias Warning Figure updated in revision one to correct a bug where times did not
match those included in analysis. Trms estimated by differencing adjacent 20s time bins and averaged
over baselines. Agrees within 25% of theory estimate (Equation 1) where we assume Trcvr = 50 K.
We noted strong divergences in sets 2 and 3. Later we learned that delay spectrum reconstruction of
missing channels (lately referred to as in-painting) was done in two bands separated by orbcomm at
137MHz. This step weights by a Blackman-Harris window which improves spectral dynamic range
at the cost of increased uncertainty at the edges.

taken across interleaved time samples to provide a per time, per frequency noise realization. The
root mean square of these estimations is taken over all baselines (in a redundant group) and time
to estimate a per frequency noise power. noise powers, shown in Figure 3, are then used to create
independent realizations of noise for every baseline.

These noise powers are compared to the predicted noise given the usual two component
sky/thermal model Rogers & Bowman (2008)

Tsys = 180 K
( ν

180MHz

)−2.55
+ Trcvr (1)

where we assume Trcvr = 50 K.

1.4 Identifying Systematic Removal

Bias Warning This section has been added for clarity after the HERA validation discussion
and relies on knowledge of the systematic removal step gained after this discussion.

We have set up this test to answer two questions. First, can we detect the EoR in simulation
of the complete HERA pipeline? However, fully aware that despite evidence to the contrary, we
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(b) Data set 2

Figure 4: Left: The visibility amplitude from a representative baseline from data set 1. Right:
The visibility amplitude from a representative baseline from data set 2. Again we see high power
regions at band edges due to per-band Fourier filtering.

worry about systematic filtering leading to false negatives or false positive we have attempted to
answer an additional question: can we make a detection without the systematic filtering step? Our
simulation properties are formally hidden from us, including the status of systematic removal, so
as a first step we attempt to logically identify which Sets have had systematic removal applied.

Inspecting the amplitudes Figure 4 and variances Figure 3, a clear difference is immediately
apparent. The systematic removal step is performed in delay space and as a result of the use
of tapers during Fourier Transforms the final product will have large excesses at the band edges.
Data sets 2 and 3 display multiple large noise excesses near the band edges selected for power
spectrum estimation. These excess are consistent with the end result of a systematic removed
dataset. Figure 4 shows the visual difference between data sets without systematic removal (data
set 1 shown) and those with systematic removed (data set 2 shown). Visual inspection can easily
bin the 4 data sets into groups with and without systematics removed.

The variance waterfalls for baselines in each of the four data sets also support this classification.
Figure 5 compares the bootstrap variance for a baseline in each dataset to the bootstrap variance
of the input noise simulation. Simulation sets 1 and 4, display excess variance near τ ∼ 1000 ns
and from this we can gain conclude they have not had systematics like cable reflections removed.
Similarly, the lack of these characteristics in simulation sets 2 and 3 indicate these two sets have
undergone reflection removal. The higher variance relative to a noise simulation at these delay
modes is consistent with high power from the τ = 0 ns mode coupling to this mode through a
cable reflection. This effect can cause high variance if the signal is exhibits similar amplitude on
all baselines but with a varying phase. In other words, the amplitude of this signal can average out
when cross multiplying many baselines, but the baseline to baseline variations will manifest in the
uncertainty.

1.5 Calculating The Power Spectrum

SIMPLEDS estimates the power spectrum as a Fourier Transform over frequency to delay space and
cross-multiplied across redundant baselines between every baseline and interleaved time pair. This
provides both upper and lower triangles of the cross-multiplication matrix between baselines from
time set 1 and baseline from time set 2. The diagonal of this matrix (same baseline but different
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time set) is discarded in order to reduce any chance of noise bias in the final estimate. The mean
of this matrix yields a power spectrum at every time. Uncertainties are calculated, again per time
step, by sampling with replacement over the baseline pair dimension and with each sample set
calculating a mean. The standard deviation of the re-sampled means yields an error spectrum for
each time.

These spectra are then incoherently averaged (folded) across the τ = 0 ns line and then over time
to produce a single spectrum as a function of |τ | for each baseline type, redshift, and polarization.

Bias Warning The weighting used in the original analysis applied inverse variance using the

bootstrap uncertainties. After discussion, this weighting scheme is changed to use 1/P 2
N weighting.

PN is constant across all delays but varies with time according to the number of LST samples. We
estimate it as the delay averaged bootstrap uncertainties from the noise simulation which we’ve
shown to agree with the more theoretical estimate.

Using unit conversion factors defined in Liu et al. (2014), Parsons et al. (2012b, 2014) the power
spectrum is transformed from a function of delay (P (|τ |)) to cosmological wavenumber (P

(
|k‖|

)
).

Instead of performing averages over baselines in some annulus in k-space, we have simply aver-
aged all three baseline types, which were pre-selected for this purpose.

These error bars can be compared to the theoretical sensitivity of the telescope calculated using
the expected noise power derived in Parsons et al. (2012a) and applied in Pober et al. (2013, 2014),
Cheng et al. (2018) and Kolopanis et al. (2019).

PN (k) =
X2Y ΩeffT

2
sys

tintNdaysNbls

√
2Nlst

(2)

where relevant definitions of each factor can be found in the attached analysis notebooks in Ap-
pendix A

1.6 Interpreting the results

Identifying the presence or lack of EoR signal in the simulations is not as trivially accomplished.
Figure 6 and Figure 7 subdivide the simulations into sets with and without systematics removed
for each redshift bin and polarization. As seen in the figures, an excess of power is distinguishable
in the power spectrum of set 3 compared to 2 at this redshift in the range 300 ns ≤ τ ≤ 800 ns in
the z = 10.38 bin.

In contrast, in the z = 7.96 bin, no discernible excess exists between the power spectra in each
sub group with the exception of 2 data points in the range 500 ns ≤ τ ≤ 750 ns. However given
the use of blackman-harris taper during the Fourier Transform, these two data points should be
considered highly correlated and as a result would only be indicative of a single independent sample.
Therefore there are no statistically significant differences between these two sets of simulations
outside of the foreground dominated region. Inside the foreground dominated region there are
statistically significant deviations at almost every point. Most notably that the largest power value
is not observed at the τ = 0 ns delay mode.

The statistical differences inside the foreground wedge lead to the conclusion that there is some
over all large scale differences between simulation sets 3 and 2, and sets 1 and 4 however it is not
possible to discern what these differences are in the z = 7.96 bin.

We note that the large bias in all sets looks suspiciously like the result of uneven spectral
sampling of the type usually handled by a CLEAN-type reconstruction. Examining the sampling
function in Figure 1 we see only modest variation in the spectral weights; some channels have more
data points than others but all have something. Variation in sample counts will cause each channel
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to have slightly different error bars. This is included in the noise model which does not show any
kind of offset. Nevertheless, we continue to harbor suspicions that some kind of window function
is at work. Bias Warning This will turn out to be the case later.

2 Analysis 2: after limited discussion with Validation group

The outcome of the first analysis was, essentially a null result. Though we could easily tell which
sets had their systematics removed, we saw a large bias swamping anything fainter.

Per the terms of the hidden value experiment, work up to this point had been done under a
communication blackout. Though this was done to preserve the integrity of the test, it also limited
our ability to align the details of the analysis choices with the primary group. Realizing this we
all agreed to attempt correcting differences without contaminating us. We met with the Validation
group and described the above analysis. This exchange revealed in a small number of differences
between shadow and mainline analysis, none of which were perceived to be significant impact.
Though we have taken precautions to avoid contamination we have marked any plots made after
our exchange with a Bias Warning giving any details necessary like this.

2.1 Analysis choices different from mainline

The group noted several small differences in data selection or statistical measure. In this section
we work through these changes and report any changes that result.

• LST ranges selected by the collaboration were slightly different than the ones we chose origi-
nally. First we adjusted to the mainline ranges of ([1.5, 2.7], [4.5, 6.5]) and then, as discussed
later, these are again altered to ([1.5,2.5], [5.65,6.5]) to reduce a positive bias seen in the
baseline type (37, 12).

• HERA official power spectrum uses a
1

P 2
N

weighting to average which is independent of delay.

• Do not flag areas where the number of samples is zero. These zeroes represent no information,
but the in-painting should not be flagged to allow for smooth Fourier Transforms. Flagging
obviates the point of in-painting.

These differences are all small corrections in the pipeline. One decision must be made, however.
SIMPLEDS provides multiple estimates of PN : theoretical sensitivity, bootstrap error, time differ-
ence noise propagated as a noise simulation. We have elected to use the uncertainties of the noise
simulation averaged across all delay modes to estimate PN . Unlike the sensitivity theory in Equa-
tion 2, this estimator will reflect time variation in the thermal noise due to changing number of
LST samples, but not additional variation due to non-redundancy. It strikes a middle of the road
balance.

Updated results from these changes are shown in Figure 8 and Figure 9. The presence of many
highly significant detections above the noise floor are obvious in all redshifts, and polarizations
which are consistent across all four datasets. Since these detections are consistent across all four
data sets, it is reasonable to conclude they are due to a non-EoR systematic signal present in the
simulations.
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2.2 Other tests: Slow Systematic

One possible explanation for the above bias is an error in simulation causing some added systematic
to remain. We investigate the impact of a residual low-fringe rate (slowly time varying) offset by
removing the time average (per frequency) from the data and performing the experiment over again.
No significant difference was observed.

However other possible sources are not as obvious to identify and rule out. Suppressed by 6
orders of magnitude in the power spectrum equals to a systematic at the −30 dB level in visibility
space and would appear below the per-baseline noise level. A follow up analysis using a statistical
“drop-out” test could identify if individual baseline exhibit this systematic bias.

Two additional tests were conducted to identify possible sources of discrepancy but no dis-
cernible results were gleaned:

• Analyse each LST bin separately, instead of averaging all together

• Increasing the length of both spectral windows to be equal to the original length of the higher
frequency band.

2.3 Other tests: systematic flagging

The biased systematic seems to be concentrated in the baseline type (37, 12) which is the southeast-
erly direction, see Figure 11. In considering unbiased ways to identify offsets like this we considered
the SSINS (Wilensky et al., 2019) algorithm which identifies bias in visibilities below the noise of
an individual baseline. We applied the SSINS algorithm which identified a significant increase in
variance near the boundaries of the LST window. Revising these windows to ([1.5,2.5], [5.65,6.5])
resulted in a small improvement Figure 12 and Figure 13 but not enough to say which set contains
an obvious EoR signal.

There is a statistical difference in the z = 10.38 redshift bin between data sets 2 and 3 Figure 10.
However, data sets 1 and 4 are not statistically different in this redshift bin.

This all weakly implies data data set 3 has EoR simulation while 2 does not, but no conclusions
can be drawn about data sets 1 and 4.
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Figure 10: Bias Warning In set 3 we see 7 points between k of 0.2 and 0.35 which are
substantially above the noise. In Set 2 these points are consistent with noise. These points have
∆2 amplitudes of 2e4 rising to 2e5 mK2/h3

2.4 Revision Summary and Discussion

As the net result of these revisions seems to be a potentially conclusive improvement at redshift
10 Figure 9 but not Figure 8, it is important to pinpoint the significance of the various changes.
We made an A/B study of each proposed change, examining the difference before and after the
change and also noting any increased separation between sets 2 and 3. In most cases no significant
improvement was noted. The most notable improvement came from restricting the input LST
range; first narrowed from our initial uninformed selection to the selection used in the mainline
analysis, and then, motivated by the SSINS variance, even slightly further.

HERA systematic removal is applied as a filter in the time and frequency domains. This filter is
applied on individual spectral and temporal subsections defined by the LST and spectral windows.
Each axis is weighted to minimize ringing resulting in large noise at the time and frequency edges.
These have been accounted for in the HERA data selections but somehow that selection is a little
too wide in this analysis. We speculate that either A) the settings of the filter applied to this
simulation do not match those used to justify the mainline HERA LST cut B) the affected baseline
type is not included in the HERA analysis, or C) something else.
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3 Conclusions

We offer the following conclusions based on the above analysis

1. Data sets 1 and 4 have not been processed for systematic removal. Figure 3,Figure 4,Figure 5

2. Datasets 1 and 4 are indistinguishable under inspection but we have not offered a numerical
confirmation of this conclusion.

3. In Data set 3 we observe a detection at redshift 11 above data set 2 in k values below 0.4
hMpc−1 Figure 6, and Bias Warning

4. Dataset #2 is consistent with noise in this range. given the known parameters of the test,
we conclude that dataset 3 contains an EoR simulation with an amplitude roughly 5x that of
the noise.

5. We cannot offer a similar conclusion about EoR at redshift 7.
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(a) Data set 1
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(b) Data set 2
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(c) Data set 3
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(d) Data set 4

Figure 5: Waterfalls of the bootstrap variance for each simulated data set and accompanying noise
simulation. The excess variance near ±1000 ns in sets 1 and 4 indicate these simulations have not
undergone systematic removal.
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(a) Data sets 1 (black) and 4 (red) – systematic present
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(b) Data sets 3 (black) and 2 (red) – systematic removed?

Figure 6: Top: the averaged power spectra for sets 1 (black) and 4 (red) at z = 10.38. Bottom:
the averaged power spectra of sets 3 (black) and 2 (red) at z = 10.38. Power spectra are grouped
together based on presence or absence of large variances seen in Figure 3. and Figure 5. An excess
of power is distinguishable in the power spectrum of set 3 compared to 2 at this redshift in the
range 300 ns ≤ τ ≤ 800 ns.
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(a) Data sets 1 (black) and 4 (red) - systematic present
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(b) Data sets 3 (black) and 2 (red) - systematic removed?

Figure 7: The same as Figure 6 except at redshift z = 7.96. No discernible excess exists between the
power spectra in each sub group with the exception of 2 data points in the range 500 ns ≤ τ ≤ 750 ns.
However given the use of Blackman-Harris taper during the Fourier Transform, these two data
points should be considered highly correlated and effectively just one independent sample. Therefore
there are no statistically significant differences between these two sets of simulations outside of the
foreground dominated region. Inside the wedge there are statistically significant deviations at
almost every point. Most notably that the largest power value is not observed at the τ = 0 ns
delay mode. This is predominantly caused by a single redundant baseline group dominating the
average. The statistical differences inside the foreground wedge lead to the conclusion that there
is some over all large scale differences between simulation sets 3 and 2, and sets 1 and 4.
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(a) Data sets 1 (black) and 4 (red) – systematic present
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(b) Data sets 3 (black) and 2 (red) – systematic removed

Figure 8: Bias Warning Power spectra at z = 10.38 after changes described in subsection 2.1:
LST range, weighting, and treatment of flags. The presence of highly significant detections in all
sets of simulations, across many delay bins implies a systematic contaminating the power spectrum
estimation. This systematic is below the per-baseline noise floor, but well above the noise floor of
the integrated power spectrum.
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(a) Data sets 1 (black) and 4 (red)
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(b) Data sets 3 (black) and 2 (red) – systematic removed

Figure 9: Bias Warning Power spectra after changes described in subsection 2.1: LST range,
weighting, and treatment of flags. The same as Figure 8 except at redshift z = 7.96. The lower
redshift bins still have no statistical differences providing evidence for the existence of EoR in any
data sets.
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(a) Redundant baseline group like (1, 26)
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(b) Redundant baseline group like (12, 14)
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(c) Redundant baseline group like (37, 12)

Figure 11: Bias Warning Systematic bias seems strongest on one type of baseline, seen here
in data set 1. The baseline type like (37, 12), the southeasterly baseline, has a much stronger bias.
There is no other motivation for excluding this baseline in final averaging. Shrinking the included
LST range has proven effective at reducing this bias.
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(a) Data sets 1 (black) and 4 (red)
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(b) Data sets 3 (black) and 2 (red) – systematic removed

Figure 12: Bias Warning Top: the averaged power spectra for sets 1 (black) and 4 (red)
at z = 10.38. Bottom: the averaged power spectra of sets 3 (black) and 2 (red) at z = 10.38.
Power spectra are grouped together based on presence or removal of a reflection systematic near
τ ∼ 1000 ns. There is no direct evidence for the existence of EoR signal in the data sets 1
and 4 comparison, however data set 3 has a highly significant excess compared to set 2 below
k = .5 h−1Mpc
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(a) Data sets 1 (black) and 4 (red)
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(b) Data sets 3 (black) and 2 (red) – systematic removed

Figure 13: Bias Warning The same as Figure 12 except at redshift z = 7.96. The lower
redshift bins still have no statistical differences providing evidence for the existence of EoR in any
data sets.
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Plan for a hidden answer test of HERA simpleDS shadow pipeline 
12 May 2020 

D. Jacobs 
 

 
A Narrative 
This is a plan for a hidden-answer test of two power spectrum pipelines. The broader goal of the parallel 
pipeline test is to add another way of guarding against experimenter bias in pipeline development. Ideally 
while not hobbling ourselves in the face of limited understanding of systematics. A shadow power 
spectrum pipeline using simpleDS has been part of the project plan for some time, but has not been 
discussed much until recently. We are now faced with a desire to know how closely the two power 
spectrum codes get, but don’t want to test on the real data. The memo summarizes discussions had 
over several meetings of the hera_pspec group and the broader collaboration during datacons. 
 
We propose a test which is distinct from the mainline HERA Validation effort but uses simulations 
generated by that group. Validation efforts are focused on testing the primary pipeline. Here we will use a 
few of the Validation tests to make a hidden answer test of the primary power spectrum estimator 
(hera_pspec) and the “shadow” simulator (simpleDS). 
 
We want several things from this test. First we want to see that at least two different implementations of 
similar algorithms get close to the expected answer, recognizing that we might not have a 100% analytical 
prediction for the expectation answer given the inputs. Second we want to see that both register the effect 
of the systematic removal portion of our calibration pipeline. Third, we want an exercise in reporting a 
result when we don’t know the answer. 
 
 The simplest way to incur experimenter bias is to draw conclusions from exploration data. The solution is 
to build simulations that model the data and use this to test the pipeline.  This is the goal of the HERA 
Validation team. However another kind of bias can still creep in if there is tight feedback between the 
simulations and the analysis pipelines or between two parallel pipelines and they begin to influence each 
other. This has been seen for example in the development of the penultimate PAPER pipeline where noise 
simulations and analytic error were developed in tight coupling, ending with two codes outputting error 
bars that were erroneously small.  The goal here is to make checks between analysis steps with minimal 
development interactions. 
 
A Plan 
Using simulations generated by the validation group which has been operating largely independently from 
the development of simpleDS we will have avoided tight coupling. We will use some known answer 
simulations for a limited validation check and then switch to  unknown answer simulations. 
 
In the case of the unknown answer we will attempt to place limits on the EoR using only the information 
available to us in the case of real data.   Given that one tool at our disposal is secrecy, we will observe the 
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principle that conclusions about any hidden answer will provide an interesting data point at small extra 
cost in resources. In other words, lets keep as much as possible secret! 
 
Known Answer Test 
We will use the Noise + flat Pk validation test  

1. Thermal noise is reference simulation 0.0  <insert NRAO path here> 
2. flat gaussian Pk is ref sim 0.1 (no noise)  /lustre/aoc/projects/hera/alanman/eor_sky_sim/ 

Question: are we returning an answer consistent with analytic predictions? 
 
Unknown Answer 
The hidden value test should be run sparingly. This will minimize feedback loops.  This pushes us to 
think each run out carefully, taking advantage of possible variations.  At the present time it is thought that 
the systematic removal step in the pipeline will present the most uncertainty in a final analysis.  Also the 
receiver temperature is usually poorly constrained and estimated as part of a power spectrum analysis. 
This motivates the following variations which are listed here and summarized in Table 1. 
 
Hidden Variation 1:  

Whether the simulated high delay systematic has been filtered.  
Hidden Variation 2: 

 EoR power spectrum level and shape. In half the simulations EoR will be excluded, in the other 
half it will be included at an unknown level and spectrum shape. 
Hidden Parameter 1: 

All simulations will include noise. We will constrain receiver temperature variation to being 
within 50% of a flat 100K+-50K. Trcvr will not vary between simulations. 

 
Filenames should be cleansed of all hidden values. LST binned data products will be integrated into a 
single dataset (not split into even/odd or whatever) 
 
Table 1: First HERA Hidden Value test. Values in Red are known to the simulator but hidden from the 
analyst. 

Sky Noise EoR Systematic filtering 

GSM+Gleam + gain errors  + 
calibration 

Trcvr = 100K+-50K Some level No 

GSM+Gleam + calibration + gain 
errors  + calibration 

Trcvr = 100K+-50K None No 

GSM+Gleam + calibration + gain 
errors  + calibration 

Trcvr = 100K+-50K Some level Yes 

GSM+Gleam + calibration + gain 
errors  + calibration 

Trcvr = 100K+-50K None Yes 
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Known to Analysis Hidden from Analysis 

 
 
Organization 
Simulations 
Simulations will be generated by the Validation group.  Noise and flat Pk available now. Results 
Simulations from the Hidden Value expected in a week or two May 20 - 27. Form of results LST binned 
(10days, 6 hours of LST) simulated data.  
 
Analysis 
SimpleDS will be carried out by M. Kolopanis and D. Jacobs. Report on Noise+Pl to be delivered by May 
22. Initial reports on hidden analysis will be discussed within the ASU group before reporting out to the 
group. Final report comparing all results and reporting out guesses for model components and EoR levels 
will be made two weeks (TBD) after simulation delivery. 
 
Parameters 
We’d like the power spectrum parameters to match up between the prime and shadow analyses. 
Spectral window--channels 515:695 
LST ranges 
Type of polarization products (I vs xx) 
Form of power spectrum (cross baselines, t_i * t_{i+1}) 

• bl_1_time_even x bl_2_time_odd and bl_2_time_even x bl_1_time_odd 
All LSTs, integrated in time, and integrated in baseline. 
Beams: /lustre/aoc/projects/hera/Validation/HERA_beams 

• NF_HERA_dipole_linpol_power_healpix128.fits 
• NF_HERA_dipole_IQ_power_healpix128.fits 
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SimpleDS Shadow Pipeline Test 0.1

Matthew Kolopanis

October 28, 2020

• Initial Memo: May 29, 2020

• Revision 1: June 5, 2020

SimpleDS is a python packaged developed to perform FFTs along frequency axis of radio in-
terferometric data and perform all possible baseline cross multiplications, while accounting for
units and cosmological conversion factors. In order to provide a credible alternative power spec-
trum estimate to the hera_pspec power spectrum pipeline, additional tests have been designed to
evaluate the outputs of this python package against known and unknown inputs.

For a complete list of a tests involved in the shadow pipeline evaluation and more information
on the parameters of each test, refer to the document attached at the end of this memo. I will pro-
vide a brief summary here. The shadow pipeline test suite involves five total tests characterized
by the following simulation parameters:

0.1 A known input power spectrum with no noise.

1.1 Foregrounds, noise, no EoR and no systematic

1.2 Foregrounds, noise, an unknown EoR and no systematic

1.3 Foregrounds, noise, no EoR and an unknown systematic

1.4 Foregrounds, noise, an unknown EoR and an unknown systematic

This memo details the results from the HERA SimpleDS shadow pipeline test 0.1 “Flat P(k)”.
The data product analyzed consists of simulated HERA data containing one realization of three
unique baseline groups. The goal is to estimate the input power spectrum the simulator used
which is expected to be a flat in power spectrum space as a function of cosmological wavenumber,
k. While not a necessary parameter of this test, we have elected to perform this test with the input
power spectrum level unknown.

After initial analysis and results are reported, the input power spectrum value is compared
with the results of this memo. Additional analysis is then appended to the original memo and any
changes made to previous figures and tables are noted in line.

For completeness, the entire analysis notebook is also included.

[31]: %matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import LogNorm, SymLogNorm

1
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import os
from itertools import cycle
from IPython.display import display, Latex

from pyuvdata import UVData, UVBeam, utils as uvutils
import pyuvdata
import glob

from scipy import integrate
from scipy.signal import windows
from scipy.interpolate import interp1d, UnivariateSpline as USpline

from itertools import product

import simpleDS as sds
from simpleDS import DelaySpectrum, utils, cosmo

from astropy import units, constants as const
from astropy.coordinates import Angle
from astropy.visualization import quantity_support
from astropy.cosmology import LambdaCDM, WMAP9, Planck15

[2]: quantity_support();

[70]: def sci_notation(num, err=None, decimal_digits=1, precision=None, exponent=None):
"""
Returns a string representation of the scientific
notation of the given number formatted for use with
LaTeX or Mathtext, with specified number of significant
decimal digits and precision (number of decimal digits
to show). The exponent to be used can also be specified
explicitly.
"""
if isinstance(num, units.Quantity):

unit = num.unit
num = num.value

else:
unit = units.dimensionless_unscaled

if exponent is None:
exponent = np.int(np.floor(np.log10(np.abs(num))))

coeff = np.round(num / np.float(10**exponent), decimal_digits)
if precision is None:

precision = decimal_digits
if err is not None:

err = err.to_value(unit)
uncert = np.round(err / np.float(10**exponent), decimal_digits)

2
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return r"(${0:.{3}f} \pm {1:.{3}f}) \cdot10^{{{2:d}}}$ {4}".
↪→format(coeff, uncert, exponent, precision, unit.to_string("latex"))

else:
return r"${0:.{2}f}\cdot10^{{{1:d}}}$ {3}".format(coeff, exponent,␣

↪→precision, unit.to_string("latex"))

[4]: # print version info
for m in [np, sds, pyuvdata]:

print("{} verison {}".format(m.__name__, m.__version__))

numpy verison 1.18.4
simpleDS verison 2.0.1.dev14+gc154036
pyuvdata verison 2.0.3.dev149+gf7497fa2

[5]: DATA_PATH="/lustre/aoc/projects/hera/alanman/eor_sky_sim/"
BEAM_PATH = "/lustre/aoc/projects/hera/Validation/HERA_beams"
data_files = [os.path.join(DATA_PATH, "eorsky_3.00hours_Nside128_sigma0.

↪→03_fwhm12.13_uv.uvh5")]
beam_file = os.path.join(BEAM_PATH, "NF_HERA_dipole_IQ_power_healpix128.fits")
outfile = "/lustre/aoc/projects/hera/mkolopan/shadow_pipeline/flat_pk_sds.hdf5"
spws = [[0, 383]]

[6]: uvb = UVBeam()
uvb.read_beamfits(beam_file)

[7]: uv = UVData()
uv.read(data_files[:], read_data=False, file_type='uvh5')
uv.read(

data_files[:],
file_type='uvh5',
polarizations=np.intersect1d(

uvb.polarization_array, uv.polarization_array
)

)

Telescope eorsky is not in known_telescopes.

[8]: uv.extra_keywords

[8]: {'bm_fwhm': 12.129942517040208,
'bsq_int': 0.02535452255352503,
'nside': 128,
'skysig': 0.031,
'slurm_id': '1321259'}

3
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[12]: antpos, ants = uv.get_ENU_antpos(pick_data_ants=False)
x, y, z = antpos.T
fig, ax = plt.subplots(1, facecolor='white')
plt.plot(x,y, 'ko');

# ax1.set_xlim([50, 175])
# ax1.set_ylim([200,300])
for _ant, (_x,_y) in zip(ants, zip(x,y)):

xlims = ax.get_xlim()
ylims = ax.get_ylim()
if np.logical_and(

_x >= np.min(xlims), _x < np.max(xlims)
) and np.logical_and(

_y >= np.min(ylims), _y < np.max(ylims)
):

ax.text(_x +1.5, _y + 2.5, _ant)

for bl, bl_ind in zip(*np.unique(uv.baseline_array, return_index=True)):
a1, a2 = uv.baseline_to_antnums(bl)
ind1 = np.argwhere(ants == a1)
ax.arrow(

x[ind1].squeeze(),
y[ind1].squeeze(),
uv.uvw_array[bl_ind, 0],
uv.uvw_array[bl_ind, 1],
length_includes_head=True,
color='red',
width=1.0625,

)

ax.grid()
ax.set_xlabel("East/West Antenna Position [m]");
ax.set_ylabel("North/South Antenna Position [m]");

4
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The simulation consists of the three baselines (0, 11), (0, 12), and (11, 12) to represent the three
shortest redundant groups of the HERA hex show in the figure and covers the spectral band of
100-130 MHz.

The default spectral taper for a SimpleDS object is a Blackman-Harris shown in the figure be-
low along with the inverse flag occupation (total fraction of unflagged samples). For a simulation
this is expected to be identically 1.

[13]: fig, ax = plt.subplots(1, figsize=(20,5))
freqs = uv.freq_array[0] * units.Hz
flags = uv.nsample_array.astype(float).squeeze()
ax.plot(

freqs.to("MHz"),
flags.sum(0)/flags.sum(0).max(),
'k-'

);

for chan in spws:
mid = np.mean(chan)
_w = windows.blackmanharris(chan[1] - chan[0] + 1)
ax.fill_between(freqs[chan[0] : chan[1] + 1].to('MHz'), 0, _w,␣

↪→color='black',alpha=.5 )
ax.set_ylabel("1 - Flag Occupation")
ax.grid()

5
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Since a SimpleDS object can only perform power spectrum estimation on a single baseline
group, three objects are used to estimate the power spectrum of all redundant groups in this
simulations.

[14]: bl_cross = [(11, 12), (0, 11), (0, 12)]
times = np.unique(uv.time_array)

uv1 = uv.select(bls=bl_cross[0], times=times[::2], inplace=False)
uv2 = uv.select(bls=bl_cross[0], times=times[1::2], inplace=False)
ds = DelaySpectrum(uv=[uv1, uv2])
ds.add_uvbeam(uvb)
ds.cosmology = Planck15
# ds.set_taper(windows.boxcar)

uv1 = uv.select(bls=bl_cross[1], times=times[::2], inplace=False)
uv2 = uv.select(bls=bl_cross[1], times=times[1::2], inplace=False)
ds2 = DelaySpectrum(uv=[uv1, uv2])
ds2.add_uvbeam(uvb)
ds2.cosmology = Planck15

uv1 = uv.select(bls=bl_cross[2], times=times[::2], inplace=False)
uv2 = uv.select(bls=bl_cross[2], times=times[1::2], inplace=False)
ds3 = DelaySpectrum(uv=[uv1, uv2])
ds3.add_uvbeam(uvb)
ds3.cosmology = Planck15

lst_array parameter value is array, values are not close

Input LST arrays differ on average by 0.18383526862692248 min. Keeping LST array
stored from the first data set read.

lst_array parameter value is array, values are not close
lst_array parameter value is array, values are not close

[15]: ds_list = [ds, ds2, ds3]
for _d in ds_list:

6
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ds.set_taper(windows.blackmanharris)

[18]: fft_freq = lambda x: np.fft.fftshift(np.fft.fft(x * ds.taper(x.shape[1]).
↪→reshape(1,-1), axis=1), axes=1)

fft_fringe = lambda x: np.fft.fftshift(np.fft.fft(x * ds.taper(x.shape[0]).
↪→reshape(-1,1), axis=0), axes=0)

fringe_rates = (np.fft.fftshift(np.fft.fftfreq(ds.Ntimes, d=np.diff(ds.lst_array.
↪→to('hourangle'))[0].value) )/units.hour).to('mHz')

The Data

A quick look at the data in the simulations illustrates a noise-like variation in the amplitude over
frequency and time. This is consistent with the expected underlying flat P(k) input.

[19]: ncols = ds.Nuv + 1
nrows = ds.Nbls - np.all(ds.flag_array, axis=(0,1,2,4,5)).sum()
cmap = plt.cm.viridis
cmap.set_bad('black')
vmin = -5
vmax = 5
norm = LogNorm(vmin=1e-5, vmax=1e-1)
for _d in ds_list:

fig, ax = plt.subplots(
figsize=(12, 3 * nrows + 1),
nrows=nrows,
ncols=ncols,
sharex=False,
sharey=False,
facecolor='white',
gridspec_kw={"width_ratios":[15] * ds.Nuv + [1]},
squeeze=False,
)

fig.subplots_adjust(hspace=.35, wspace=0.1, top=.9)
fig.suptitle(

f"z={_d.redshift.item(0):.2f} "
f"{uvutils.polnum2str(_d.polarization_array.item(0))} "
f"{uvutils.baseline_to_antnums(_d.baseline_array[0], _d.

↪→Nants_telescope)}"
)
for day_cnt, day in enumerate(["even", "odd"]):

for bl_cnt, bl in enumerate(_d.baseline_array):

if np.all(ds.flag_array[:, :, :, bl_cnt]):
continue

sharedy = ax[bl_cnt, 0].get_shared_y_axes()

sharedx = ax[bl_cnt, 0].get_shared_x_axes()
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ax[bl_cnt, 0].set_ylabel("LST [hour]")

ax[bl_cnt, 0].set_xlabel(r"Frequency [MHz]")
for pol_cnt, pol in enumerate(uvutils.polnum2str(ds.

↪→polarization_array)):
sharedx.join(ax[bl_cnt, 0], ax[bl_cnt, day_cnt])
sharedy.join(ax[bl_cnt, 0], ax[bl_cnt, day_cnt])

masked_data = np.ma.masked_array(
_d.data_array[0, day_cnt, pol_cnt, bl_cnt].value,
mask=_d.flag_array[0, day_cnt, pol_cnt, bl_cnt]

)

im = ax[bl_cnt, day_cnt].pcolormesh(
_d.freq_array[0].to('MHz'),
_d.lst_array.to("hourangle"),
np.abs(masked_data),
cmap=cmap,
norm=norm,

)

ax[bl_cnt, day_cnt].set_title(f"{day}")
_ylim = ax[bl_cnt, day_cnt].get_ylim()
ax[bl_cnt, day_cnt].set_ylim([np.max(_ylim), np.min(_ylim)])

tick_labels = ax[bl_cnt, day_cnt].get_yticks()
tick_labels = [Angle(t*units.hourangle).to_string() for t in␣

↪→tick_labels]
ax[bl_cnt, day_cnt].set_yticklabels(tick_labels);

if 0 < day_cnt < ncols - 1:
plt.setp(ax[bl_cnt, day_cnt].get_yticklabels(),␣

↪→visible=False)
ax[bl_cnt, day_cnt].set_ylabel("")

cbar = fig.colorbar(im, cax=ax[bl_cnt, -1], label="Jy")#
cbar.ax.set_xlabel(

cbar.ax.get_ylabel(),
fontsize=18,

)
cbar.ax.set_ylabel(None)

Transforming to Fringe-Rate space illustrates the slight evolution of the data over frequency
with respect to Fringe-Rate for each baseline orientation. Again this small evolution is consistent
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with expectations over the 30MHz band. Positive and negative fringe-rates may be a result of
conjugation conventions of the data.

[20]: ncols = ds.Nuv + 1
nrows = ds.Nbls - np.all(ds.flag_array, axis=(0,1,2,4,5)).sum()
cmap = plt.cm.viridis
cmap.set_bad('black')
vmin = -5
vmax = 5
norm = LogNorm(vmin=1e-5, vmax=1e-1)
for _d in ds_list:

fig, ax = plt.subplots(
figsize=(12, 3 * nrows + 1),
nrows=nrows,
ncols=ncols,
sharex=False,
sharey=False,
facecolor='white',
gridspec_kw={"width_ratios":[15] * ds.Nuv + [1]},
squeeze=False,
)

fig.subplots_adjust(hspace=.35, wspace=0.1, top=.9)
fig.suptitle(

f"z={_d.redshift.item(0):.2f} "
f"{uvutils.polnum2str(_d.polarization_array.item(0))} "
f"{uvutils.baseline_to_antnums(_d.baseline_array[0], _d.

↪→Nants_telescope)}"
)
for day_cnt, day in enumerate(["even", "odd"]):

for bl_cnt, bl in enumerate(_d.baseline_array):

if np.all(ds.flag_array[:, :, :, bl_cnt]):
continue

sharedy = ax[bl_cnt, 0].get_shared_y_axes()

sharedx = ax[bl_cnt, 0].get_shared_x_axes()

ax[bl_cnt, 0].set_ylabel("Fringe-Rate [mHz]")

ax[bl_cnt, 0].set_xlabel(r"Frequency [MHz]")
for pol_cnt, pol in enumerate(uvutils.polnum2str(ds.

↪→polarization_array)):
sharedx.join(ax[bl_cnt, 0], ax[bl_cnt, day_cnt])
sharedy.join(ax[bl_cnt, 0], ax[bl_cnt, day_cnt])

masked_data = np.ma.masked_array(
_d.data_array[0, day_cnt, pol_cnt, bl_cnt].value,
mask=_d.flag_array[0, day_cnt, pol_cnt, bl_cnt]
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)

im = ax[bl_cnt, day_cnt].pcolormesh(
_d.freq_array[0].to('MHz'),
fringe_rates,
np.abs(fft_fringe(masked_data)),
cmap=cmap,
norm=norm,

)

ax[bl_cnt, day_cnt].set_title(f"{day}")
_ylim = ax[bl_cnt, day_cnt].get_ylim()
ax[bl_cnt, day_cnt].set_ylim([np.max(_ylim), np.min(_ylim)])

if 0 < day_cnt < ncols - 1:
plt.setp(ax[bl_cnt, day_cnt].get_yticklabels(),␣

↪→visible=False)
ax[bl_cnt, day_cnt].set_ylabel("")

ax[bl_cnt, 0].set_ylim([1, -1])
cbar = fig.colorbar(im, cax=ax[bl_cnt, -1], label="Jys")#
cbar.ax.set_xlabel(

cbar.ax.get_ylabel(),
fontsize=12,

)
cbar.ax.set_ylabel(None)
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[21]: for _d in ds_list:
_d.select_spectral_windows(spws)
_d.check()

[22]: for _d in ds_list:
_d.calculate_delay_spectrum(littleh_units=True)

[23]: ncols = np.int(np.ceil(np.sqrt(ds.Npols)))
nrows = np.int(np.ceil(ds.Npols/float(ncols)))

The Power Spectrum

In power spectrum space the data again looks noise-like in amplitude, this is consistent with the
Fourier transform of a flat spectrum input.

[24]: cmap = plt.cm.viridis
cmap.set_bad('black')
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vmin = -5
vmax = 5
norm = LogNorm(vmin=1e0, vmax=1e10)
for _d in ds_list:

for z_cnt, z in enumerate(_d.redshift):
ncols = _d.Npols + 1
nrows = _d.Nbls - np.all(_d.flag_array, axis=(0, 1, 2, 4, 5)).sum()
fig, ax = plt.subplots(

figsize=(12, 5 * nrows + 1),
nrows=nrows,
ncols=ncols,
sharex=False,
sharey=False,
facecolor='white',
squeeze=False,
gridspec_kw={"width_ratios":[10] * _d.Npols + [1]},
)

fig.subplots_adjust(hspace=.35, wspace=0.1, top=.95)
# fig.suptitle(f"{np.around(np.linalg.norm(_d.uvw.value),1)} {day:

↪→s}")
fig_count = 0
for bl_cnt, bl in enumerate(_d.baseline_array):

if np.all(ds.flag_array[:, :, :, bl_cnt]):
continue

sharedy = ax[fig_count,0].get_shared_y_axes()

sharedx = ax[fig_count,0].get_shared_x_axes()

ax[fig_count, 0].set_ylabel("LST [hour]")

ax[fig_count, 0].set_xlabel(r"$\tau$ [ns]")
for pol_cnt, pol in enumerate(uvutils.polnum2str(_d.

↪→polarization_array)):
sharedy.join(ax[fig_count,0], ax[fig_count, pol_cnt])
sharedx.join(ax[fig_count,0], ax[fig_count, pol_cnt])
masked_data = np.ma.masked_array(

ds.power_array[z_cnt, pol_cnt, 0, 0].value,
mask=ds.flag_array[z_cnt, pol_cnt, 0, 0],

)
im = ax[fig_count, pol_cnt].pcolormesh(

_d.delay_array.to('ns'),
_d.lst_array.to('hourangle'),
np.real(masked_data),
cmap=cmap,
norm=norm,

)

13

Shadow Pipeline Pspec/stage0.1 validation

35



ax[fig_count, pol_cnt].set_title(
f"z={z:.2f} "
f"{uvutils.polnum2str(_d.polarization_array[pol_cnt])} "
f"{uvutils.baseline_to_antnums(_d.baseline_array[0], _d.

↪→Nants_telescope)}"
)
_ylim = ax[fig_count, pol_cnt].get_ylim()
ax[fig_count, pol_cnt].set_ylim([np.max(_ylim), np.min(_ylim)])

tick_labels = ax[fig_count, pol_cnt].get_yticks()
tick_labels = [Angle(t*units.hourangle).to_string() for t in␣

↪→tick_labels]
ax[fig_count, pol_cnt].set_yticklabels(tick_labels);
if 0 < pol_cnt < ncols - 1:

plt.setp(ax[fig_count, pol_cnt].get_yticklabels(),␣
↪→visible=False)

ax[fig_count, pol_cnt].set_ylabel("")

cbar = fig.colorbar(im, cax=ax[fig_count, -1], label=ds.power_array.
↪→unit.to_string("latex"))#

cbar.ax.set_xlabel(
cbar.ax.get_ylabel(),
fontsize=18,

)
cbar.ax.set_ylabel(None)
fig_count += 1

[25]: ncols = np.int(np.ceil(np.sqrt(ds.Npols)))
nrows = np.int(np.ceil(ds.Npols/float(ncols)))
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Estimating Input P(k)

To properly estimate the variance of the power spectrum as a function in time, it is necessary to
estimate the number of unique LST bins based on the FWHM of the input beam. To perform this
estimation I use the following relations

θ =
λ

D
The beam crossing time in LSTs is then calculated as

LSTΩ = θ
12 hours
π cos(l)

where l is the latitude of the telescope location. Finally the number of unique LST bins is

NLSTS =
Tobs

LSTΩ

where Tobs is the total length of the input simulation. Revision 1: The form of this equation has
changed slightly to more clearly indicate that the numerator should reflect the entire observa-
tion time of the input data.

The uncertainty of the power spectrum is then estimated as the standard deviation over the
LST axes, divided by

√
NLST, or the standard deviation of the mean accounting for the total num-

ber of unique elements along this axis.
When fitting for µ̂ (input power spectrum level), the effective degrees of freedom must account

for the number of unique delay bins after performing a spectral taper. Since the Blackman-Harris
taper has a noise equivalent bandwidth (NEBW) of 2, the number of unique bins is then Ndelays

2
where Ndelays is the total number of delay bins. The total number of degrees of freedom of the fit

is then do f =
Ndelays

2 − 1.
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All three baseline orientations fit an input power spectrum are not consistent with a single
input P(k) but average to µ̂ = 1.55× 106 Mpc3 mK2

h3
100

. The exact fits, uncertainties and χ2

do f are outlined
in the table below.

Unweighted Average Inverse Variance Average
Ant Pair µ̂u σ̂u

χ2

do f µ̂iv σ̂iv
χ2

do f

(11, 12) 2.70 0.13 2.706 1.56 0.06 1.077
|(0, 11) 2.69 0.11 2.616 1.64 0.06 1.193
|(0 ,12) 2.68 0.12 3.592 1.46 0.06 1.462

Table 1: The values of the µ̂ and σ̂ are presented in the units 106 Mpc3 mK2

h3
100

. Revision 1: This
table has been altered to also include the unweighted mean and uncertainty to compare against
values computed during revision 1.

[55]:

[77]: for _d in ds_list:
# Trying to estimate the number of independent time samples to properly␣

↪→account for the number of samples when taking the variance.
beam_crossing = ((const.c / _d.freq_array.mean()) / (14.4*units.m) * 12 *␣

↪→units.h / np.pi / np.cos(uv.telescope_location_lat_lon_alt[0])).to(units.min)

for z_cnt, redshift in enumerate(ds.redshift):
fig, ax = plt.subplots(

ncols=ncols,
nrows=nrows,
figsize=(15,5),
facecolor='white',
sharex=True,
sharey=True,
squeeze=False

)
ax = ax.ravel()
for pol_ind in range(_d.polarization_array.size):

vals = _d.power_array[z_cnt,pol_ind].mean((0,1,2)).real
errs = 2 * _d.power_array[z_cnt,pol_ind].mean((0,1)).real.std(0) /␣

↪→np.sqrt((_d.Ntimes * _d.integration_time.item(0) / beam_crossing).si)

_mean = np.average(vals, weights=1. / (errs) ** 2)
_err = np.sqrt(1./np.sum(1. / (errs)**2))
_chi2 = np.sum((_mean - vals) ** 2 / ((errs) ** 2))

dof = (ds.Ndelays * utils.noise_equivalent_bandwidth(ds.taper(ds.
↪→Nfreqs)) - 1)
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ax[pol_ind].errorbar(
_d.k_parallel[0],
vals,
errs,
fmt='k.', alpha=.8,
label="Data" if pol_ind==0 else ''

);

ax[pol_ind].grid()
ax[pol_ind].set_ylabel(r'P($k_{{\parallel}}$) [{0}]'.format((_d.

↪→power_array.unit).to_string('latex')), fontsize=16)
ax[pol_ind].set_xlabel(r'$k_{{\parallel}}$ [{0}]'.format(_d.

↪→k_parallel.unit.to_string('latex')), fontsize=16)
ax[pol_ind].set_title(

f"z={_d.redshift[z_cnt]:.2f} "
f"{uvutils.polnum2str(_d.polarization_array[pol_ind])} "
f"{uvutils.baseline_to_antnums(_d.baseline_array[0], _d.

↪→Nants_telescope)}\n"
r" $\hat{\mu}$="
f"{sci_notation(_mean, _err, decimal_digits=2)} "
r"$\frac{\chi^{2}}{dof}$="
f"{_chi2/dof:.3f}\n"
, fontsize=16)

sharex = ax[0].get_shared_x_axes()
for pol_cnt in range(_d.polarization_array.size):

sharex.join(ax[0], ax[pol_cnt])

sharey = ax[0].get_shared_y_axes()
for pol_cnt in range(ds.polarization_array.size):

sharey.join(ax[0], ax[pol_cnt])
ax[0].set_yscale('log')
ax[0].set_ylim(1e5, 5e7)
fig.subplots_adjust(wspace=.05, hspace=.175, top=.85)
fig.suptitle(

f" "

);
# ax[0].axhline(P0mk, color='red', linestyle='dashed')
# fig.legend(frameon=False, ncol=3, numpoints=1,bbox_to_anchor=[.5, .

↪→06]);
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Revision 1: These figures have been altered to also include the mean and uncertainty obtained
by performing an unweighted average.

Hidden Value Conclusions

This analysis produces estimates for the input flat power spectrum most consistent with µ̂ =

1.55× 106 Mpc3 mK2

h3
100

for all three baseline groups.

• Beginning of Revision 1: June 5, 2020

Comparison with Input

After the initial results are reach without knowledge of the input P(k), the parameters in the input
UVData objects are read to compute the expected value of P(k).

[59]: # get the parameters needed to compute the expected amplitude of the power␣
↪→spectrum

nside = uv.extra_keywords[u'nside']
dOmega = 4 * np.pi/(12 * nside ** 2) * units.sr # sr
skysig = uv.extra_keywords[u'skysig'] * 1e3 * units.mK
df = np.diff(np.unique(uv.freq_array)).mean() * units.Hz # Hz
z = cosmo.calc_z(uv.freq_array.mean() * units.Hz)
X2Y = cosmo.X2Y(z) # (h^-1 Mpc)^3 sr^-1 Hz^-1

# calculate expected power spectrum amplitude
P0 = skysig ** 2 * df.si * dOmega * X2Y
#
P0mk=P0.to(ds.power_array.unit, units.with_H0(_d.cosmology.H0))
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[72]: display(Latex(" The initial test results were inconsistent with the expected␣
↪→$P(k)$= " +sci_notation(P0.to("mK^2Mpc^3/littleh^3", units.with_H0(cosmo.
↪→Planck15.H0)), decimal_digits=2)))

The initial test results are inconsistent with the expected P(k)= 2.89 · 106 Mpc3 mK2

h3
100

Analysis Differences

After reviewing validation test 0.1 notebook the following areas were identified to be potential
causes of discrepancies

• Inverse Variance vs Unweighted averaging
• Power spectrum normalization via the beam square integral

This memo now reports values for fits using both weighting schemes to determine whether or
not the choice of weighting scheme affects the fit value,

Power spectrum normalization and unit conversion factors can contribute to significant dis-
crepancies between expected inputs and fit values.

To evaluate whether difference can cause discrepancies in the final fit, a ratio of the beam
square area computed by simpleDS from the HERA beam input file (Ωpp,simpleDS), and the reported
beam square integral in the provided data file (Ωpp,eorsky) is plotted below. Since all three baseline
types are being transformed over the same contiguous band, only one beam squared integral is
plotted in the figure.

[16]: fig, ax = plt.subplots(1, figsize=(10,5))
ax.set_ylabel(r"$\frac{\Omega_{pp,simpleDS}}{\Omega_{pp,eorsky}}$", fontsize=20)
ax.set_xlabel(r"$\nu$ [MHz]")
ax.plot(ds.freq_array[0].to("MHz"), ds.beam_sq_area[0,0].value/uv.

↪→extra_keywords["bsq_int"])
ax.grid()
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This difference in the beam squared integral Ωpp can result in normalization difference in final
power spectrum.

The ratio of the
∫ dν

Ωpp(ν)
for each beam square integral will provide an overall normalization

factor, BΩ, which may explain small difference in the fit values of the input power spectrum.

BΩ =

∫ dν
Ωpp,simpleDS∫ dν

Ωpp,eorsky

[17]: beam_sq_int_sds = integrate.trapz(1./ds.beam_sq_area[0,0], x=ds.freq_array[0])
beam_sq_int_input = integrate.trapz(np.ones_like(ds.beam_sq_area[0,0].value)/(uv.

↪→extra_keywords["bsq_int"] * units.sr), x=ds.freq_array[0])
b_omega = beam_sq_int_sds/beam_sq_int_input
print(b_omega, f"Percent difference: {100*(1-b_omega):.3f}")

0.9216614501215799 Percent difference: 7.834

Indicating up to ∼ 8% difference may be expected between the input P(k) and the fit power
spectrum values.

This normalization factor BΩ is not a value normally applied to data. It is a necessary factor to
convert between the integrated spectrally varying beam square area of the beam provided for the
shadow pipeline analysis and the spectrally constant beam reported by the simulation file.

Refined Results

The fitting is repeated but this time accounting for the BΩ normalization discrepancy, this is equiv-

alent to multiplying each µ̂ and the uncertainties σ̂ by the scale factor
1

BΩ
.

Two fits are also now performed, an average (µ̂u) to be consistent with previous test 0.1 note-
book averaging scheme and the inverse variance average (µ̂iv) to compare how results change
with the analysis previously computed in this memo.

All three baseline orientations fit an input power spectrum consistent with an unweighted fit
consistent with µ̂u = 2.92× 106 Mpc3 mK2

h3
100

and when fit with inverse variance weighting are not all

consistent with a single input P(k) but will average to µ̂iv = 1.69× 106 Mpc3 mK2

h3
100

. The exact fits,

uncertainties and χ2

do f are outlined in the table below.

Unweighted Average Inverse Variance Average
Ant Pair µ̂u σ̂u

χ2

do f µ̂iv σ̂iv
χ2

do f

(11, 12) 2.92 0.14 2.706 1.70 0.07 1.077
(0, 11) 2.92 0.12 2.616 1.78 0.07 1.193
(0 ,12) 2.91 0.13 3.592 1.58 0.07 1.462

Table 2: The values of the µ̂ and σ̂ are presented in the units 106 Mpc3 mK2

h3
100

.
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[76]: for _d in ds_list:
# Trying to estimate the number of independent time samples to properly␣

↪→account for the number of samples when taking the variance.
beam_crossing = ((const.c / _d.freq_array.mean()) / (14.4*units.m) * 12 *␣

↪→units.h / np.pi / np.cos(uv.telescope_location_lat_lon_alt[0])).to(units.min)

for z_cnt, redshift in enumerate(ds.redshift):
fig, ax = plt.subplots(

ncols=ncols,
nrows=nrows,
figsize=(15,5),
facecolor='white',
sharex=True,
sharey=True,
squeeze=False

)
ax = ax.ravel()
for pol_ind in range(_d.polarization_array.size):

vals = _d.power_array[z_cnt,pol_ind].mean((0,1,2)).real/ b_omega
errs = 2 * _d.power_array[z_cnt,pol_ind].mean((0,1)).real.std(0) /␣

↪→np.sqrt((_d.Ntimes * _d.integration_time.item(0) / beam_crossing).si) / b_omega

u_mean = np.average(vals)
u_err = np.sqrt(np.sum(errs ** 2)/np.abs(errs.size) **2 )
u_chi2 = np.sum((u_mean - vals) ** 2 / ((errs) ** 2))

iv_mean = np.average(vals, weights=1. / (errs) ** 2)
iv_err = np.sqrt(1./np.sum(1. / (errs)**2))
iv_chi2 = np.sum((iv_mean - vals) ** 2 / ((errs) ** 2))

dof = (ds.Ndelays * utils.noise_equivalent_bandwidth(ds.taper(ds.
↪→Nfreqs)) - 1)

ax[pol_ind].errorbar(
_d.k_parallel[0],
vals,
errs,
fmt='k.', alpha=.8,
label="Data" if pol_ind==0 else ''

);

ax[pol_ind].grid()
ax[pol_ind].set_ylabel(r'P($k_{{\parallel}}$) [{0}]'.format((_d.

↪→power_array.unit).to_string('latex')), fontsize=16)
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ax[pol_ind].set_xlabel(r'$k_{{\parallel}}$ [{0}]'.format(_d.
↪→k_parallel.unit.to_string('latex')), fontsize=16)

ax[pol_ind].set_title(
f"z={_d.redshift[z_cnt]:.2f} "
f"{uvutils.polnum2str(_d.polarization_array[pol_ind])} "
f"{uvutils.baseline_to_antnums(_d.baseline_array[0], _d.

↪→Nants_telescope)}\n"
r" $\hat{\mu}_{u}$="
f"{sci_notation(u_mean, u_err, decimal_digits=2)} "
r"$\frac{\chi^{2}}{dof}$="
f"{u_chi2/dof:.3f}\n"
r" $\hat{\mu}_{iv}$="
f"{sci_notation(iv_mean, iv_err, decimal_digits=2)} "
r"$\frac{\chi^{2}}{dof}$="
f"{iv_chi2/dof:.3f}\n"
, fontsize=16)

sharex = ax[0].get_shared_x_axes()
for pol_cnt in range(_d.polarization_array.size):

sharex.join(ax[0], ax[pol_cnt])

sharey = ax[0].get_shared_y_axes()
for pol_cnt in range(ds.polarization_array.size):

sharey.join(ax[0], ax[pol_cnt])
ax[0].set_yscale('log')
ax[0].set_ylim(1e5, 5e7)
fig.subplots_adjust(wspace=.05, hspace=.175, top=.85)
fig.suptitle(

f" "

);
ax[0].axhline(P0mk, color='red', linestyle='dashed')

# fig.legend(frameon=False, ncol=3, numpoints=1,bbox_to_anchor=[.5, .
↪→06]);

24

Shadow Pipeline Pspec/stage0.1 validation

46



25

Shadow Pipeline Pspec/stage0.1 validation

47



Conclusion

Comparing the fits before and after applying the normalization constant indicates the averaging
scheme is the largest contributing factor to the discrepancy between expectation and fitted value.

When accounting for differences in averaging schemes and power spectrum normalization, the
fit µ̂ is consistent with the expected value of 2.89 · 106 Mpc3 mK2

h3
100

however these fits are accompanied

by a χ2

do f ∼ 3 may indicate this is not the optimal fit for the computed power spectra.

Outstanding Questions

When this analysis is repeated with a boxcar spectral taper, numerical results are consistent with
fits obtained above. However, the computed χ2

do f indicates that the unweighted average is a better
fit to the data than the inverse variance weighted average. This poses the question of whether the
number of degrees of freedom for the fit are being computed correctly.
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Plan for a hidden answer test of HERA simpleDS shadow pipeline 
12 May 2020 

D. Jacobs 
 

 
A Narrative 
This is a plan for a hidden-answer test of two power spectrum pipelines. The broader goal of the parallel 
pipeline test is to add another way of guarding against experimenter bias in pipeline development. Ideally 
while not hobbling ourselves in the face of limited understanding of systematics. A shadow power 
spectrum pipeline using simpleDS has been part of the project plan for some time, but has not been 
discussed much until recently. We are now faced with a desire to know how closely the two power 
spectrum codes get, but don’t want to test on the real data. The memo summarizes discussions had 
over several meetings of the hera_pspec group and the broader collaboration during datacons. 
 
We propose a test which is distinct from the mainline HERA Validation effort but uses simulations 
generated by that group. Validation efforts are focused on testing the primary pipeline. Here we will use a 
few of the Validation tests to make a hidden answer test of the primary power spectrum estimator 
(hera_pspec) and the “shadow” simulator (simpleDS). 
 
We want several things from this test. First we want to see that at least two different implementations of 
similar algorithms get close to the expected answer, recognizing that we might not have a 100% analytical 
prediction for the expectation answer given the inputs. Second we want to see that both register the effect 
of the systematic removal portion of our calibration pipeline. Third, we want an exercise in reporting a 
result when we don’t know the answer. 
 
 The simplest way to incur experimenter bias is to draw conclusions from exploration data. The solution is 
to build simulations that model the data and use this to test the pipeline.  This is the goal of the HERA 
Validation team. However another kind of bias can still creep in if there is tight feedback between the 
simulations and the analysis pipelines or between two parallel pipelines and they begin to influence each 
other. This has been seen for example in the development of the penultimate PAPER pipeline where noise 
simulations and analytic error were developed in tight coupling, ending with two codes outputting error 
bars that were erroneously small.  The goal here is to make checks between analysis steps with minimal 
development interactions. 
 
A Plan 
Using simulations generated by the validation group which has been operating largely independently from 
the development of simpleDS we will have avoided tight coupling. We will use some known answer 
simulations for a limited validation check and then switch to  unknown answer simulations. 
 
In the case of the unknown answer we will attempt to place limits on the EoR using only the information 
available to us in the case of real data.   Given that one tool at our disposal is secrecy, we will observe the 
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principle that conclusions about any hidden answer will provide an interesting data point at small extra 
cost in resources. In other words, lets keep as much as possible secret! 
 
Known Answer Test 
We will use the Noise + flat Pk validation test  

1. Thermal noise is reference simulation 0.0  <insert NRAO path here> 
2. flat gaussian Pk is ref sim 0.1 (no noise)  /lustre/aoc/projects/hera/alanman/eor_sky_sim/ 

Question: are we returning an answer consistent with analytic predictions? 
 
Unknown Answer 
The hidden value test should be run sparingly. This will minimize feedback loops.  This pushes us to 
think each run out carefully, taking advantage of possible variations.  At the present time it is thought that 
the systematic removal step in the pipeline will present the most uncertainty in a final analysis.  Also the 
receiver temperature is usually poorly constrained and estimated as part of a power spectrum analysis. 
This motivates the following variations which are listed here and summarized in Table 1. 
 
Hidden Variation 1:  

Whether the simulated high delay systematic has been filtered.  
Hidden Variation 2: 

 EoR power spectrum level and shape. In half the simulations EoR will be excluded, in the other 
half it will be included at an unknown level and spectrum shape. 
Hidden Parameter 1: 

All simulations will include noise. We will constrain receiver temperature variation to being 
within 50% of a flat 100K+-50K. Trcvr will not vary between simulations. 

 
Filenames should be cleansed of all hidden values. LST binned data products will be integrated into a 
single dataset (not split into even/odd or whatever) 
 
Table 1: First HERA Hidden Value test. Values in Red are known to the simulator but hidden from the 
analyst. 

Sky Noise EoR Systematic filtering 

GSM+Gleam + gain errors  + 
calibration 

Trcvr = 100K+-50K Some level No 

GSM+Gleam + calibration + gain 
errors  + calibration 

Trcvr = 100K+-50K None No 

GSM+Gleam + calibration + gain 
errors  + calibration 

Trcvr = 100K+-50K Some level Yes 

GSM+Gleam + calibration + gain 
errors  + calibration 

Trcvr = 100K+-50K None Yes 
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Known to Analysis Hidden from Analysis 

 
 
Organization 
Simulations 
Simulations will be generated by the Validation group.  Noise and flat Pk available now. Results 
Simulations from the Hidden Value expected in a week or two May 20 - 27. Form of results LST binned 
(10days, 6 hours of LST) simulated data.  
 
Analysis 
SimpleDS will be carried out by M. Kolopanis and D. Jacobs. Report on Noise+Pl to be delivered by May 
22. Initial reports on hidden analysis will be discussed within the ASU group before reporting out to the 
group. Final report comparing all results and reporting out guesses for model components and EoR levels 
will be made two weeks (TBD) after simulation delivery. 
 
Parameters 
We’d like the power spectrum parameters to match up between the prime and shadow analyses. 
Spectral window--channels 515:695 
LST ranges 
Type of polarization products (I vs xx) 
Form of power spectrum (cross baselines, t_i * t_{i+1}) 

• bl_1_time_even x bl_2_time_odd and bl_2_time_even x bl_1_time_odd 
All LSTs, integrated in time, and integrated in baseline. 
Beams: /lustre/aoc/projects/hera/Validation/HERA_beams 

• NF_HERA_dipole_linpol_power_healpix128.fits 
• NF_HERA_dipole_IQ_power_healpix128.fits 
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A Analysis Notebooks

All notebooks used in this analysis can be found at https://github.com/mkolopanis/HERA_

shadow_pipeline_notebooks
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