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Abstract

We derive the power spectrum normalization scalar that relates the
dimensionality of the output of hera pspec.oqe module to the dimen-
sionality of the input data. This is derived for the numerical routines as
they appear in hera pspec under GIT hash .

1 Conversion from Jy to mK

An interferometric visibility is inherently in units of Jansky (10−23 ergs sec−1

cm−2 Hz−1). Visibilities measured by a correlator will almost always be cali-
brated to a Jansky scale, meaning that after calibration our visibilities will still
be in units of Jansky. To convert them to units of milli-Kelvin, we use the
definition of the brightness temperature from the Rayleigh-Jeans Law:

Iν =
2ν2kbTb
c2

=
2kbTb
λ2

(1)

where I is in units of specific intensity (ergs sec−1 cm−2 Hz−1 steradians−1)
and T is in units of Kelvin. This, however, is a mapping from specific intensity
to temperature. What we require is a mapping from Jansky (flux density)
to temperature, which we can accomplish by first mapping Jansky to specific
intensity. This is done by dividing by the integral of the beam power response,
commonly referred to as Ωp in the literature:

Ωp(ν) =

∫
4π

dΩ A(ŝ, ν) (2)

where A is unitless, direction-dependent scalar normalized to unity at boresight,
and Ωp carries units of radians2 or steradians.

To summarize, the full conversion from a visibility on a Jansky scale to a
visibilty on a mK scale is

VmK(λ) = VJy(λ)10−23
λ2

2kbΩp(λ)
103, (3)

where the 10−23 comes from converting Jansky to flux density in ergs sec−1

cm−2 Hz−1, and the 103 comes from the Kelvin to milli-Kelvin conversion.
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2 Normalization conventions in the quadratic
estimator

Once we have performed the unit conversions outlined in the previous section,
our measurement equation is

Vb(ν) =
γ(ν)

Ωp(ν)

∫
dΩ T (n̂, ν) A(n̂, ν) e−i

2πb·n̂
λ , (4)

where dΩ is a differential solid angle in steradians, T is the brightness temper-
ature on the sky, and A is the primary beam. The (optional) function γ(ν) is
some tapering function (e.g., Blackman-Harris) that can be imposed by the data
analyst. For the purposes of deriving the normalization conventions, there is
no difference between invoking the flat-sky approximation and a full curved-sky
treatment. Taking the flat-sky limit, we can say

Vb(ν) =
γ(ν)

Ωp(ν)

∫
d2θT (θ, ν)A(θ, ν) e−i2πub·θ, (5)

where we have also defined ub ≡ b/λ. Henceforth we will neglect the frequency
dependence of ub, which is tantamount to ignoring “wedge physics”. This also
has no effect on the normalizations. For later convenience, we can also write
this relation in Fourier space so that

Vb(ν) =

∫
dηd2u

γ(ν)

Ωp(ν)
T̃ (u, η)Ã(ub − u, ν)ei2πην , (6)

where η is the Fourier dual to ν, u is the Fourier dual to θ, and

T̃ (u, η) ≡
∫
d2θdνe−i2πu·θe−i2πηνT (θ, ν), (7)

with Ã similarly defined as the Fourier transform of A.
We first define a power spectrum P in “observer units”. This power spec-

trum does not depend on cosmological parameters, and is therefore a helpful
intermediate quantity. This power spectrum is defined by the relation

〈T̃ (u, η)T̃ ∗(u′, η′)〉 ≡ δD(u− u′)δD(η − η′)P (u, η), (8)

where 〈· · · 〉 signifies an ensemble average and δD represents a Dirac delta func-
tion. This definition of P agrees with how one would define a “naive delay
spectrum” for an instrument with a tophat primary beam.

The basic building block of the quadratic estimator is the covariance matrix
C ≡ 〈xx†〉 of our data x. If each element of the vector is a different frequency
channel of a single baseline’s visibility, then the components of the covariance
matrix are given by

Cij ≡ 〈Vb(νi)V ∗b (νj)〉

=

∫
dηd2uP (u, η)ei2πη(νi−νj)Ã(ub − u, νi)Ã

∗(ub − u, νj)
γ(νi)

Ωp(νi)

γ(νj)

Ωp(νj)
. (9)
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We now make two approximations. The first is that the primary beam is fairly
broad, so that the Ã is compact as a function of u. This means that the integral
receives most of its contribution from u ≈ ub, and we can evaluate P (u, η)
there, factoring it out of the integral:

Cij ≈
∫
dηP (ub, η)ei2πη(νi−νj)

∫
d2uÃ(ub−u, νi)Ã

∗(ub−u, νj)
γ(νi)

Ωp(νi)

γ(νj)

Ωp(νj)
.

(10)
Next we assume that P is piecewise constant over some discrete bins in η, which
gives

Cij ≈
∑
α

Pα

∫
ηα

dηei2πη(νi−νj)
∫
d2uÃ(ub − u, νi)Ã

∗(ub − u, νj)
γ(νi)

Ωp(νi)

γ(νj)

Ωp(νj)

≈
∑
α

Pα∆ηei2πηα(νi−νj)
∫
d2uÃ(ub − u, νi)Ã

∗(ub − u, νj)
γ(νi)

Ωp(νi)

γ(νj)

Ωp(νj)

≈
∑
α

Pα∆ηei2πηα(νi−νj)
∫
d2θA(θ, νi)A(θ, νj)

γ(νi)

Ωp(νi)

γ(νj)

Ωp(νj)
(11a)

≡
∑
α

PαQ
α
ij . (11b)

The matrix Qα is defined as ∂C/∂Pα, and encodes the response of the data
covariance to the αth bandpower Pα. It is the bridge between the input vector
space that data vectors inhabit and the output vector space that bandpowers
inhabit.

The quadratic estimator formalism instructs us to form an estimate of the
power spectrum bandpowers by first computing

q̂α ≡
1

2
x†Qαx. (12)

Taking the expectation value of this gives

〈q̂α〉 =
1

2
tr (QαC) =

1

2

∑
β

tr
(
QαQβ

)
P β . (13)

This shows that on average, q̂α measures a weighted sum of a true bandpowers.
To arrive at a properly normalized power spectrum, the weights of the sum must
add to unity. Alternatively, we can simply divide our estimator with the sum
of our weights, obtaining

P̂α =
x†Qαx∑

γ tr (QαQγ)
. (14)

If we computed our power spectra in this way, our answers would be automati-
cally normalized by construction. However, this is not what we typically do in
our power spectrum pipelines. Instead of comparing Equations (11a) and (11b)
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to obtain the Qα that is inserted into Equation (12), we observe that the main
function of Qα is to Fourier transform the two data vectors that act on it and
define

Qalt,α
ij ≡ Dei2πηα(νi−νj), (15)

where D is some constant that we can pick later. We then insert this into our
quadratic form in place of Qα so that

q̂altα ≡
1

2
x†Qalt,αx, (16)

which has an expectation value of

〈q̂α〉 =
1

2
tr
(
Qalt,αC

)
=

1

2

∑
β

tr
(
Qalt,αQβ

)
P β . (17)

With this expression, one would normally write an estimator of the form

P̂
alt

α =
x†Qalt,αx∑

γ tr (Qalt,αQγ)
. (18)

It turns out that this still isn’t what’s done in the code! Instead, the code simply
assumes that it is correct to replace Qα with every instance of Qalt,α (ignoring
the fact that Equation 17, for instance, has Qα and Qalt,α serving distinct roles).
To compensate for the fact that this is incorrect, a final normalization factor κ
is inserted, so that our expression becomes

P̂
code

α =
x†Qalt,αx

κ
∑
γ tr (Qalt,αQalt,γ)

. (19)

Comparing the expression for P̂
alt

α with the expression for P̂
code

α , we see that

P̂
code

α will only give correctly normalized power spectra if

κ
∑
γ

tr
(
Qalt,αQalt,γ

)
=
∑
γ

tr
(
Qalt,αQγ

)
. (20)

We may use this to solve for the correct κ and/or D. (There is some freedom
as to where one inserts the correction factors). Evaluating the LHS, we have

κ
∑
γ

tr
(
Qalt,αQalt,γ

)
= κ

∑
γij

Qalt,α
ij Qalt,γ

ji = κD2
∑
γij

ei2πηα(νi−νj)ei2πηγ(νj−νi)

= κD2Nfreq

∑
ij

ei2πηα(νi−νj)δij = κD2N2
freq, (21)

where in evaluating the sum over γ, we used the symmetries of the discrete
Fourier transform to say that

∑
γ e

i2πηγ(νj−νi) = Nfreqδij . The RHS evaluates
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to∑
γ

tr
(
Qalt,αQγ

)
=

∑
γij

Qalt,α
ij Qγ

ji

= D∆η
∑
γij

ei2πηα(νi−νj)ei2πηγ(νj−νi)
∫
d2θA(θ, νj)A(θ, νi)

= D∆ηNfreq

∑
ij

ei2πηα(νi−νj)δij

∫
d2θA(θ, νi)A(θ, νj)

γ(νi)

Ωp(νi)

γ(νj)

Ωp(νj)

= D∆ηNfreq

∑
i

γ2(νi)

Ω2
p(νi)

∫
d2θA2(θ, νi). (22)

Equating the two expressions then gives

κD = ∆η
1

Nfreq

∑
i

γ2(νi)

Ω2
p(νi)

∫
d2θA(θ, νi)

2. (23)

Now, for a numerical FFT, ∆η = 1/B and Nfreq = B/∆ν. Thus, one obtains

κD =
1

B2

∑
i

∆ν
γ2(νi)

Ω2
p(νi)

∫
d2θA(θ, νi)

2 ≈ 1

B2

∫
dν
γ2(ν)

Ω2
p(ν)

∫
d2θA(θ, ν)2.

(24)
This is precisely the form of the “usual” power spectrum scalar (minus the cos-
mological scalings), as defined in previous memos. Since κ and D are complete
degenerate here, one can choose for simplicity to set D = 1. This is what is
done in the code.

Note that if we write out the form of our estimator, we have

P̂
code

α =

∑
ij e

i2πηα(νi−νj)Vb(νj)V
∗
b (νi)

κN2
freq

=
1

κ

∣∣∣∣∣ 1

Nfreq

∑
i

ei2πηανiV ∗b (νi)

∣∣∣∣∣
2

. (25)

This proves a piece of lore from before—that a correctly normalized power
spectrum estimate can be obtained by using a inverse Fourier transform (which
divides by Nfreq under numpy’s Fourier convention) on complex conjugated data,
squaring, and then dividing by κ.

The thoroughly confusing aspect about this is that in the hera pspec.oqe

module, one does not see any inverse Fourier transforms. This is because Equa-
tion (15) is the forward Fourier transform (i.e., without the factor of Nfreq) if
D = 1, so the use fft option of the get Q function implements it as such. What
ends up happening is that the normalization factor ends up being proportional
to 1/N2

freq, which effectively converts the forward Fourier transforms into inverse
Fourier transforms (up to a complex conjugation).

Note that if we had wanted, we could’ve set D = 1/N2
freq so that x†Qαx

corresponds to an inverse FFT. Following the mathematics through, the denom-
inator of Equation (19) then just reduces to only the power spectrum scalar, so
everything is consistent.
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3 Window functions

Taking the ensemble average of Equation (19), one can show that

〈P̂
code

α 〉 =

∑
β tr

(
Qalt,αQβ

)
P β

κ
∑
γ tr (Qalt,αQalt,γ)

. (26)

This means that the window functions are given by

Wαβ =
tr
(
Qalt,αQβ

)
κ
∑
γ tr (Qalt,αQalt,γ)

. (27)

4 Converting to cosmological coordinates

The power spectrum P defined in Equation (27) can be thought of as the power
spectrum in “telescope coordinates”, with units of mK2 Sr MHz. Ultimately, we
are interested in a power spectrum P in cosmological coordinates, with units of
mK2 h−3 Mpc3. Such a power spectrum is defined by the relation

〈T̆ (k⊥, k‖)T̆
∗(k′⊥, k

′
‖)〉 ≡ (2π)3δD(k− k′)P (k⊥, k‖), (28)

where

T̆ (k⊥, k‖) ≡
∫
d3re−ik·rT (r) and T (r) =

∫
d3k

(2π)3
eik·rT̆ (k⊥, k‖). (29)

To translate between P and P , two things need to be done:

1. The u and η dependencies need to be mapped to k⊥ and k‖ respectively,
using the relations

k⊥ =
2πu

Dc
≡ 2πu

X
and k‖ =

2πν21H0E(z)

c(1 + z)2
η ≡ 2πη

Y
. (30)

2. The estimated P needs to be multiplied by X2Y , i.e.,

P (k⊥, k‖) =
c(1 + z)2D2

c

ν21H0E(z)
P (u, η) = X2Y P (u, η). (31)

Derivations of these results are provided in Appendix A of Liu et al., PRD 90,
023018 (2014), so we won’t repeat them here. Note that in principle, X2Y is
frequency-dependent. Liu et al., ApJ 833, 242 (2016) shows that this can be
dealt with by absorbing the X2Y term into the scalar correction factor from the
previous section and moving it inside the ν integral.
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