Calibration of Quasi-Redundant Interferometers

J. L. Sievers1,2

1. Intro

Several current and near-future radio arrays, such as PAPER (Parsons et al. 2010; Ali et al. 2015), HERA (DeBoer et al. 2016), CHIME (Bandura et al. 2014; Newburgh et al. 2014), Tianlai (Chen 2012), and HIRAX (Newburgh et al. 2016), will consist primarily of close-packed detecting elements carrying out drift scans, with highly redundant baseline distributions. Calibrating these arrays presents a challenge, as the sky signal is typically dominated by unknown diffuse emission. This present challenges for traditional methods such as selfcal (Cornwell & Fomalont 1989), since the notion of a common sky model seen by all baselines, while formally true, ceases to have relevance. The calibration problems for these experiments is particularly acute since they are all searching either for Epoch of Reionization (EoR) signals or Baryon Acoustic Oscillations (BAOs); for both science cases the foreground to signal ratio is often 10^3 or greater. Developing a sky model of sufficient quality for traditional calibration may be impossible in practice for these use cases (Barry et al. 2016). For redundant arrays, an alternate approach (Omnical, Liu et al. (2010)) is to rely on the fact that all redundant baselines should see the same signal. With this assumption, Omnical can then solve for the true sky and the relative antenna gains by solving an over-determined linear least-squares problem. This procedure has been successful in calibrating redundant arrays such as PAPER. However, one shortcoming is that in real life, arrays are never perfectly redundant due to imperfect antenna locations and variations in primary beams. In this work, we present an alternative scheme to carry out the relative calibration that can take account of array imperfections. The method also generalizes to naturally include bright sources with known positions while still allowing the diffuse emission to be the dominant signal.

2. Likelihood Formulation

2.1. Traditional Redundant Calibration

In traditional redundant calibration, the instrument is modelled as a set of per-antenna (complex) gains, and a set of unknown sky values, defined at a finite set of points in the UV plane. All visibilities at a given UV point are expected to see the same sky value. Under these assumptions, the predicted measured visibility between antennas i and j is

$$g_i^* g_j S(u_i - u_j)$$
for antenna gains g_i and g_j and sky brightness $S(u_i - u_j)$ at the UV point corresponding to the vector spacing between antennas i and j, measured i wavelengths.

The form of χ^2, under the assumption of noise uncorrelated between visibilities, is then:

$$\chi^2 = \sum \frac{(v_{ij} - g_i^* g_j S(u_i - u_j))^2}{\sigma_{ij}^2}$$

It is relatively straightforward to take the gradient of the likelihood and then find the global solution for the sky and gains that minimizes χ^2 (cite xxx). If there are enough redundant baselines that the number of visibilities exceeds the number of antennas plus the number of unique baselines, then the solution is well determined, up to four degeneracies built into the likelihood. If one multiplies the gains by some factor α, and divides all sky values by α^2, then the α’s cancel, and χ^2 is explicitly unchanged. So, redundant calibration cannot set the overall gain of the instrument. Similarly, a global phase shift produces identically unchanged visibilities. Third, one can also apply phase gradients to the gains in the x– and y–directions, and apply opposite phase gradients to the sky, and again leave χ^2 explicitly unchanged. This is equivalent to changing the pointing center of the array, then shifting the sky model to the new pointing center.

Traditional redundant calibration suffers from two key assumptions than can often be improved upon in realistic cases. First, solving for the sky implicitly marginalizes over all possible skies, which are considered equally likely. We generally don’t have perfect sky models, but we often have some idea of what the sky looks like - for instance, the position of bright sources is often known, even if their fluxes at the frequency and time of observation aren’t. Second, traditional redundant calibration assumes the array is explicitly redundant, and including information about a non-ideal array is rather awkward in the formalism. For instance, Liu et al. (2010) include UV-plane gradients in the solution as first-order corrections for an imperfect array. This solution however suffers from several shortcomings. First, two nearly redundant baselines should see nearly the same sky - by solving for gradients, one effectively says that they can be arbitrarily different, which unnecessarily increases the noise in the recovered calibration, and in extreme cases can cause the system to become ill-conditioned. Second, realistic arrays will generally have properties that do not correspond to simple gradients in the UV plane. For instance, even if the dishes are all pointed in the same direction, small variations in dish manufacturing will lead to small variations in the primary beams. For a realistic array with scatters in pointing, dish positioning, and primary beams, expanding traditional redundant calibration to include the full range of possible effects rapidly becomes challenging.

2.2. Correlation Calibration

We now describe a new calibration scheme that has the advantages of traditional redundant calibration (and in fact contains traditional redundant calibration as one limiting case) while also able to flexibly include more realistic models for the instrument and sky.

While there are several ways to derive the formalism, one way is to rewrite the redundant formalism, gradually relaxing its assumptions. The key step is to remove the explicit dependence
on the sky that redundant calibration has. In redundant calibration, if one specifies the antenna gains, then it is straightforward to solve for the sky values. They are just the (noise-weighted) averages of the visibilities at each unique UV point. Now, consider the block of visibilities from a single unique UV point. Instead of solving for the sky value, one can add the unknown sky into the noise for this block. They all see the same sky value \(\alpha \), so the covariance between two visibilities from the sky is \(V_i^* V_j = \alpha^* \alpha \). Recall that in the absence of signal and in the presence of noise correlated between data points, the form of \(\chi^2 \) is

\[
\chi^2 = d^\dagger N^{-1} d
\]

where \(<d_i^*d_j> = N_{ij} \). For a redundant block, the effective noise can be written as the sum of two terms: a diagonal matrix of per-visibility noises, and a matrix that is the outer product of the vector \(\alpha \) times a vector of ones with itself.

\[
N = N_{\text{vis}} + (\alpha \mathbf{1})^\dagger (\alpha \mathbf{1})
\]

This matrix can be inverted using the Woodbury identity, which we write here in the special case of a Hermitian matrix:

\[
(A + bb^\dagger)^{-1} = A^{-1} - A^{-1}b(I + b^\dagger A^{-1}b)^{-1}b^\dagger A^{-1}
\]

Now let \(A = N_{\text{vis}} \) and \(b = \alpha \mathbf{1} \), and define weight matrix \(W \equiv N^{-1}_{\text{vis}} \). The full form of \(\chi^2 \) is now:

\[
\chi^2 = d^\dagger \left(W - W \mathbf{1} (\alpha^{-2} + \mathbf{1}^\dagger W \mathbf{1})^{-1} \mathbf{1}^\dagger W \right) d
\]

The term \(\beta \equiv \mathbf{1}^\dagger W d \) is just the weighted sum of the data. The term \(\gamma \equiv \mathbf{1}^\dagger W \mathbf{1} \) is just the sum of the weights. So, our best estimate of the sky is just the weighted average of the data, or \(\frac{\beta}{\gamma} \). If we take the limit of infinite sky variance, or \(\alpha \rightarrow \infty \) (which forces the prior probability of all possible skies to be equal), then we have

\[
\chi^2 = d^\dagger W d - \frac{\beta^2}{\gamma}
\]

where \(\beta^2 \) is understood to be the squared magnitude of the complex number \(\beta \), and since both \(\beta \) and \(\gamma \) are scalars, multiplication commutes and inverses are just divides.

Let us now compare this to the value of \(\chi^2 \) we would have gotten by fitting for the sky. Since the best fit sky is \(\frac{\beta}{\gamma} \), we can subtract that from the data vector and calculate \(\chi^2 \) as usual:

\[
\chi^2 = (d - \frac{\beta}{\gamma} \mathbf{1})^\dagger W (d - \frac{\beta}{\gamma} \mathbf{1})
\]

\[
= d^\dagger W d - 2 \frac{\beta^2}{\gamma} \mathbf{1}^\dagger W \mathbf{1} + \frac{\beta^2}{\gamma} \mathbf{1}^\dagger W \mathbf{1} \frac{\beta}{\gamma}
\]

where we have used the fact that all matrices are Hermitian to combine the two cross terms. Again, \(\mathbf{1}^\dagger W \mathbf{1} = \beta \), and \(\mathbf{1}^\dagger W \mathbf{1} = \gamma \), so we are left with

\[
\chi^2 = d^\dagger W d - 2 \frac{\beta^2}{\gamma} + \frac{\beta^2}{\gamma} = d^\dagger W d - \frac{\beta^2}{\gamma}
\]

This is identical to the expression for \(\chi^2 \) we obtained when putting the sky in as a noise term, and so the two methods must be equivalent.
2.3. Relaxing Redundancy

Switching to a covariance-based formulation of χ^2 provides significant flexibility. If we back away from the infinite signal $\alpha \rightarrow \infty$ limit, and instead treat the sky as a Gaussian random field described by a spatial power spectrum, then covariances between non-identical baselines can be calculated. There is a long literature, particularly from Cosmic Microwave Background experiments, on how to do this (White et al. 1999; Myers et al. 2003) (xxx vsa). Essentially, one integrates the product of the UV-plane primary beams of two baselines, weighting by the power spectrum as a function of $|u|$. Pointing offsets can be described by phase gradients in the UV-space primary beam, mis-positioned dishes shift the UV centers of the primary beams, and dish non-uniformities change the shape of the primary beam. So, the covariances from a wide variety of non-idealities can be calculated relatively straightforwardly.

Furthermore, sources with known positions can also be included, even if the fluxes are not precisely known. If the predicted visibilities from a source are q, then we add $q^\dagger q$ to the covariance matrix. This effectively tells the likelihood that there is less of a penalty for putting signal where a source is known to exist than spreading it out across the map. If the expected amplitude is unknown, one can simply take the limit as q goes to infinity, which fully marginalizes over the source flux.

3. Minimizing χ^2

Naively, evaluating χ^2 requires inverting a matrix with dimension n_{vis}. For 1,000 element-class instruments that have $\sim 10^6$ visibilities, brute-force inversion is computationally unfeasable. With care, however, the sparseness of typical quasi-redundant systems can be used to quickly solve for telescope gains.

Starting with χ^2, we have:

$$\chi^2 = (Gd)^\dagger (G^\dagger NG + C)^{-1} Gd$$

again, for data d, diagonal gain matrix G where the i^{th} diagonal entry is the product of the conjugate of the gain of the first antenna with the gain of the second antenna, N is the observed visibility noise variance, and C is the expected data covariance. We assume the visibility noises are uncorrelated with each other, which is usually well-justified in radio astronomy. This expression can be simplified if we instead use the inverse gains $H \equiv G^{-1}$. Then we multiply through by H^\dagger on the left and H on the right, leaving:

$$\chi^2 = d^\dagger (N + H^\dagger CH)d$$

3.1. Evaluating χ^2

For computational efficiency, we restrict the form of C. If we group the visibilities into quasi-redundant blocks, then C consists of a set of blocks along the diagonal describing the covariances
within a quasi-redundant block plus a term describing the contribution of known sources. We store the blocks and the source contributions as a set of vectors whose outer products form the quasi-redundant/source contributions to the signal covariance.

The real-imaginary symmetry usually found in radio astronomy is broken on short baselines (Myers et al. 2003) and strongly broken by the inclusion of point sources with fixed positions. So, we switch to an explicitly real formulation of χ^2. The inverse gain matrix H now consists of 2×2 blocks along the diagonal, assuming the data vector is written $[v_{1,r}, v_{1,i}, v_{2,r}, v_{2,i},...]$. Call the matrix of source vectors S and the matrix of quasi-redundant vectors R. For perfectly redundant data, R will consist of two vectors for each redundant block, one corresponding to the real part of the visibilities, and one to the imaginary part: $R_{r,:} = \alpha [1 0 1 0 ...]$ and $R_{i,:} = \alpha [0 1 0 1 ...]$. For imperfectly redundant cases, R for each block can be approximated by sufficiently large eigenvalues and their corresponding eigenvectors $\lambda_j^{1/2} v_j$. If these blocks can not be accurately represented by many fewer eigenvectors than there are visibilities within a block, then there is not sufficient redundancy in the data and any calibration that relies on redundancy is unlikely to provide a satisfactory solution.

With the sky/sources expressed as vector outer products, we now have

$$\chi^2 = d^T (N + H^T (S S^T + R R^T) H)^{-1} d$$

This matrix can fortunately be efficiently inverted by a repeated application of the Woodbury identity. First, apply the inverse gains to the source/redundant vectors. Then, invert each redundant block using the Woodbury identity while including visibility noise but ignoring sources. Then, do a final inverse using the source vectors while taking advantage of the factored form of the redundant blocks. Implemented this way, the inverse is quite efficient, with the operation count scaling like $n_{vis} \times \max(n_{src}, n_{redundant})^2$. For 1,000 antennas, 1 source and 2 redundant vectors, a single core on a laptop-class machine can evaluate χ^2 this way in ~ 0.1 seconds using a mixed C-Python code.

3.2. Minimizing χ^2

While there are several possible algorithms to find the best-fit gains, we implement a non-linear conjugate-gradient solver using gradient information. Just inverting a curvature matrix would scale like n_{ant}^3 (let along the work involved in calculating it), so the χ^2 evaluation should be faster than that as long as $\max(n_{src}, n_{redundant})$ is less than about n_{ant}. The gradient of χ^2 with respect to antenna gains is:

$$\nabla \chi^2 = d^T (N + H^T CH)^{-1} (H^T CH + H^T CH') (N + H^T CH)^{-1} d$$

where H' is the derivative of H with respect to an antenna gain. As usual, the two terms are identical, so we have

$$\nabla \chi^2 = 2 d^T (N + H^T CH)^{-1} (H^T CH)(N + H^T CH)^{-1} d$$

To evaluate this, first form $p \equiv (N + H^T CH)^{-1} d$ then $q \equiv CHp$. These matrix-vector multiplies are very fast, and are the same for all antenna gains. This leaves us with

$$\nabla \chi^2 = p^T H'^T q = q^T H' p$$
Each 2x2 block of H only has the gains from 2 antennas in it, so rather than looping over antennas, it is more efficient to loop over the visibilities, and accumulate the per-antenna contribution to the gradient.

3.3. Reference Implementation

We provide a reference Python/C implementation available from github, located at https://github.com/sievers/corrcal2. For small (~ 100 antenna) problems with only a few source/redundant vectors, using BLAS/LAPACK actually slows down the code, since the function overhead for e.g. Cholesky decomposition of 2x2 blocks is non-negligible. More complicated cases will undoubtedly wish to link to higher-performance libraries. Minimization of χ^2 is done using the Scipy (Jones et al. 2001–) nonlinear conjugate-gradient solver. For visibilities with similar noises and starting from a reasonably close calibration (off by tens of percent) we find for 1,000 antenna-class problems, including a single source and a perfectly redundant array that a single laptop-class core can evaluate χ^2 in less than 0.1s, can evaluate the gradient in $\sim 0.25s$, and can solve for a full calibration solution in 15-25s.

The current reference implementation requires only a C compiler plus Python. Future work will likely include optimizing the minimization routine for typical calibration problems, emphasizing data re-use since small problems are highly memory-limited, and a GPU port.

4. Application to Sample Data

While we defer a full investigation of the quantitative behavior of correlation calibration relative to redundant calibration to future work, we present here results from a test run. For the test run, we take an 8x8 array on a quasi-regular grid with antennas spaced by 20 wavelengths with a random noise of 0.04 wavelengths in the antenna positions in both the x- and y-directions. The primary beams are taken to be Gaussians and correspond to 13 wavelength-diameter dishes. For simplicity, we assume a flat-sky treatment; the results will not change qualitatively for a curved-sky simulation. A total of 12,500 sources are randomly distributed within $2.5\sigma_P B$ with Euclidean-distributed fluxes. Sources with primary beam-weighted flux greater than 3 times the RMS are treated as having known positions, which typically results in ~ 10 individually-treated sources. The remainder are treated by calculating the visibility covariance within quasi-redundant blocks under the assumption of a Poisson power spectrum. Eigenmodes with amplitude more than 10^{-6} times the largest are kept. This results in keeping 2-3 complex eigenmodes per quasi-redundant block. Since we are primarily interested in systematic errors in calibration, we add only a small amount of per-visibility noise - 0.1 times the bright source threshold. The calibration is then solved for three cases: 1) correlation calibration including position information on the brightest sources, 2) correlation calibration but not using bright source information, and 3) redundant calibration. The redundant calibration is actually carried out using the correlation calibration pipeline, but with the covariances calculated using the nominal grid positions rather than the actual ones and the sky covariance multiplied by a large factor to approximate the effects of sky marginalization.
We carry out roughly 2,000 sets of comparison simulations. The true gains are exactly one in the simulation, but the starting calibration fed to the conjugate-gradient solver is randomly offset by 20% in both the real and imaginary components. Comparing the results between methods is more subtle than might be expected, since the overall normalization is poorly/unconstrained, and the phase gradient is unconstrained except when bright sources are included. So, comparison to the true calibration is often not reflective of actual performance. We therefore use the following statistics to compare methods. For the amplitude, we report the standard deviation of the calibration relative to the mean, and for the phase we first fit an offset and gradient across the array and then report the standard deviation relative to that. Since the true calibration is unity, amplitude/phase correspond to the real/imaginary parts of the solution to second order.

The simulation results, plotted in Figure 1, are consistent with expectations. The median amplitude/phase standard deviations of the full source/covariance treatment are 8.3×10^{-4} and 7.0×10^{-4}. For the full covariance treatment when ignoring bright source positions the standard deviations are 9.2×10^{-4} and 4.2×10^{-3}. Finally, the redundant case gives 1.7×10^{-3} and 4.4×10^{-3}. These results show a clear hierarchy. When the true antenna positions are used, the calibration amplitude is better - a factor of 2 for the antenna noise/primary beams used here. The bright source information only provides a modest improvement on the amplitude calibration. However, the story is flipped for the phase calibration. The source-aware calibration has significantly lower phase error - for the simulation parameters it is a factor of 5 better than either redundant calibration or non-source aware correlation calibration. The two cases that do not include bright source information perform very similarly on the phase calibration, with the correlation calibration performing very slightly (~5%) better than redundant calibration.

5. Future Applications

The formulation of χ^2 presented here is highly general and can apply to a wide range of situations. We outline several possible use cases here that will be explored in further work.

5.1. Non-redundant Arrays

At its heart, redundant calibration relies on the fact that there are far more visibilities than instrumental plus sky degrees of freedom. Radio telescopes that place antennas to maximize UV coverage will likely not be calibratable this way, but arrays with sufficiently dense cores should be. There, a natural procedure is to break the UV plane up into tiles, calculate covariance within a tile, and ignore covariances between tiles. This will be sub-optimal to the extent that cross-tile covariances are non-negligible. But, it should not be biased - for instance classical redundant calibration ignores the correlations from sources (which correlate across UV position) but is unbiased.
Fig. 1.— Histograms of the scatter in recovered amplitude (left) and phase (right) for calibration on simulated source populations. The blue solid histograms shows the results from redundant calibration. The green histograms show the results when the correct covariance given true antenna positions and knowledge of the positions of the brightest sources are used. The red histograms use the correct covariances but do not use knowledge of source positions. The red histograms have been offset from the green for clarity. Using the correct covariances improves the amplitude reconstruction while using the source positions dramatically improves the phase reconstruction. The antennas are spaced by 20 wavelength, have a Gaussian primary beam size equivalent to 13-wavelength dishes, and have positional scatters of \(0.04 \times \sqrt{2}\).
5.2. Solving for Antenna Properties

The formulation presented here assumes known array properties. However, a conceptually simple extension can allow it to be used to estimate antenna properties. The value for χ^2 is properly normalized, and so absolute goodness-of-fits can be compared for varying antenna models.

One way of implementing this would be to loop over antennas, running Markov chains to solve for antenna positions/pointing offsets/beam deformations. For a small number of parameters, Markov chains converge quickly, often in just a few hundred likelihood evaluations. Re-diagonalizing blocks of the covariance matrix is very expensive, but the covariance matrix can be efficiently inverted using a partitioned inverse at the expense of increased bookkeeping.

5.3. Bandpass Calibration

Bandpass calibration is particularly crucial for experiments searching for faint signals in the presence of high foregrounds. Ripples in the calibration, either in amplitude or in phase, can allow foregrounds to leak into EoR or BAO signals. Correlation calibration provides a natural formalism to carry out cross-frequency calibration. Sources can, e.g., be described with a few modes, one corresponding to the overall amplitude and one or more to uncertainties in the spectral behavior. Most simply this would be an uncertainty in the spectral index, but it is straightforward to extend to include more complicated spectral behavior such as curvature. The cross-frequency behavior of foregrounds can also be estimated under assumptions about the spectral properties, and relevant eigenmodes included in the calibration. Combined, these extensions should naturally force the resulting sky images to be spectrally smooth. We note that the overall spectral index will likely be poorly constrained since it is effectively set by the assumed average index of the sky/sources, but the higher order calibration should be robust.

5.4. Polarization Calibration

Correlation calibration can also be extended to cover polarization calibration. Including polarization angles will allow the calibration to force a consistent view of the sky polarization between antennas. In addition, one or more calibrators with known polarization can be included by not giving a degree of freedom to the polarization angle. This will lock the solution to the calibrators while correctly accounting for uncertainties from background diffuse emission.

6. Conclusions

Arrays with nominally redundant antenna positions are becoming increasingly common in astronomy. They are particularly prevalent in Baryon Acoustic Oscillation and Epoch of Reionization studies. While redundant calibration (Liu et al. 2010) marked a great step forward, real arrays will never be exactly redundant. Calibration using a Gaussian likelihood allows one to take array non-uniformities into account, and in addition provides a natural framework to include partial knowledge
of the sky. When implemented using a 2-level sparse matrix description, the resulting likelihood is fast to calculate for even thousand element-class arrays, and canned solver routines display good convergence properties. We apply correlation calibration to simulations with antennas with small errors in their positioning and find that calibration amplitude reconstruction is improved. When knowledge of the positions of the brightest sources is included, the phase reconstruction improves significantly as well.

One of the strengths of correlation calibration is the significant flexibility built into the formalism. It can be used to calibrate even non-redundant arrays as long as they are sufficiently densely packed. With further development, it should also be a useful tool in reconstructing array properties, and carrying out bandpass and polarization calibrations. We have provided a single-frequency reference implementation which we anticipate updating in the future as more features are supported.

REFERENCES

This preprint was prepared with the AAS LaTeX macros v5.2.