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1.1 Introduction and Motivation
In this memo, we describe the statistics of ideal visibilities that can be inferred when multiple
redundant visibilities are measured. These redundancies could be due to baseline redundancy, or
LST-redundancy. The key point is that we have in hand some visibilities, 𝑉 ∈ {𝑉0, 𝑉1, ⋯ , 𝑉𝑛}
which we expect to be drawn from the same underlying distribution. A key question in this case is
whether they are indeed drawn from the same distribution, and if not, which visibilities are outliers,
and at what level?

While many measures of “outlierness” could be imagined, and these measures could be exanded
if you simply want to determine “badness” (i.e. not outliers w.r.t. the data in hand, but rather
incompatibility with the underyling priors we have for the data, e.g. spectral smoothness), we
will restrict ourselves here to those measures that are uniquely available when you have many
visibilities stacked together (e.g. at the LST-stacking stage). Thus, we will not appeal to measures
that account for spectral non-smoothness, only those that show that a given visibility on a given
baseline and channel is an outlier with respect to the other supposedly redundant measurements
for the same baseline and channel.

Since visibilities—at a given baseline, channel, and time—are expected to be drawn from Gaussian
distributions, it turns out that that the full information about the distribution is contained in the
first two moments – the mean and variance. Thus, if we have a handle on what those two values are
for the data, we can rescale the data such that all values should arise from the same distribution.
This re-scaled statistic is the 𝑍-score, and since it is a mean-zero Gaussian, all the information we
care about can be expressed through the second moment, via functions of |𝑍|2.

To be clear, we are saying that all useful measures of the outlierness of some bit of data should
be representable by a function of |𝑍|2 for that particular bit of data. Each (baseline, channel,
time) will have an associated value for |𝑍|2. The function 𝑓(|𝑍|2) = |𝑍|2 is a simple function that
specifies how much of an outlier a particular (baseline, channel, time) is with respect to its peers.
But one could also imagine taking other functions that might highlight certain aspects of the data.
Other simple such functions might be to take the mean of |𝑍|2 over different subsets of data, to
find an overall outlierness for that subset (e.g. over all channels for a particular LST, or a subset
of baselines).

This memo will thus describe the statistics of the |𝑍|2 metric – its expected distribution, and the
distribution of averages over multiple measurements of |𝑍|2, as well as relating this metric to the
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“excess variance” metric described in HERA Memo 123.

1.2 Notation and Identities
Throughout we will use an overbar (e.g. ̄𝑥) to represent a sample mean (whether a weighted mean
or not), and angle brackets (e.g. ⟨𝑋⟩) to denote an ensemble average. We will use ℛ(𝑥) and ℐ(𝑥)
to denote the real and imaginary components of 𝑥 respectively, and 𝒦(𝑥) to represent an arbitrary
(real or imaginary) component (when 𝒦 is used in an equation, it is understood to represent the
same component everywhere in the equation).

Throughout, we will make much use of the Gamma distribution, Γ(𝛼, 𝛽). A few key properties of
this distribution will be useful:

1. Γ is closely related to the central chi-square distribution: Γ(𝑘/2, 𝑘/2) ≡ 𝜒2
𝑘.

2. The mean of Γ(𝛼, 𝛽) is 𝜇 = 𝛼/𝛽 and its variance is 𝛼/𝛽2.
3. The sum of 𝑁 gamma-variates 𝐺𝑖, where 𝐺𝑖 ∼ Γ(𝛼𝑖, 𝛽) has a sampling distribution ∑𝑖 𝐺𝑖 ∼

Γ(∑𝑖 𝛼𝑖, 𝛽).
4. The distribution of a gamma-variate 𝐺 ∼ Γ(𝛼, 𝛽) scaled by a constant, 𝑎 is 𝑎𝐺 ∼ Γ(𝛼, 𝛽/𝑎).
5. Combining points 3 and 4, the mean of 𝑁 gamma-variates is ̄𝐺 ∼ Γ(∑ 𝛼𝑖, 𝑁𝛽).

1.3 Basic Definitions
Let 𝑉𝑖 be a complex-valued visibility, measured for some baseline, channel and time. Throughout,
we will assume that measurements for different baselines, channels and times are uncorrelated, and
we will thus neglect them.

The complex visibility 𝑉𝑖 = ℛ(𝑉 )𝑖 + 𝑖ℐ(𝑉 )𝑖 is drawn from a complex gaussian distribution, for
which

𝒦(𝑉 )𝑖 ∼ 𝒩(𝒦(𝜇), 𝜎2/2), (1)
(2)

That is, each of the components (real and imaginary) may have different means, but are expected
to have the same variance, which depends on the sky temperature, the channel width and the
integration time. Note that the variance of each component is half the variance of the full complex
visibility.

We would like to form an estimate of a “𝑍-score” — i.e. a rescaled random variable that is drawn
from a standard normal distribution. To do this, we need an estimate of the mean and the vari-
ance, 𝜎2. The latter is easy to come by: the autocorrelations measured by the instrument give a
good estimate of the variance, and these estimates are essentially uncorrelated with the visibilities
themselves. The mean is not quite so simple. If we did have a theoretical prediction of the mean –
𝜇 = ℛ(𝜇) + 𝑖ℐ(𝜇) – we could form:

𝑍′
𝑖 = 𝑉𝑖 − 𝜇

𝜎/
√

2

for which each component (real and imaginary) has a standard normal distribution. In this case,
we would have 𝒦(𝑍′

𝑖)2 ∼ 𝜒2
1 and |𝑍′

𝑖 |2 ∼ 𝜒2
2.
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However, we have no reliable way of theoretically predicting 𝜇. We can instead calculate an estimate
by taking the average of other data we have in hand that is supposed to be drawn from the same
distribution as 𝑉𝑖 (i.e. from redundant baselines at the same LST and channel). Let us assume
that we have 𝑁 such visibilities, and also that each may be the average of 𝑛𝑖 redundant visibilities
themselves (for example, perhaps we do a two-stage averaging, where first we average over redundant
baselines, then we average over redundant LSTs—in this case, at the LST-stacking stage, we have
redundant visibililities that have already been averaged with potentially different nsamples).

We define the weighted mean visibility, which is an estimate of 𝜇, as

̂𝜇 = ̄𝑉 ≡ (
𝑁

∑
𝑖

𝑛𝑖)
−1 𝑁

∑
𝑖

𝑛𝑖𝑉𝑖 = ∑𝑁
𝑖 𝑛𝑖𝑉𝑖
𝑀 ,

with 𝑀 = ∑𝑁
𝑖 𝑛𝑖 the total number of samples in the mean.

We now define a 𝑍-score as

𝑍𝑖 ≡ √2𝑛𝑖
𝜎2

𝑀
𝑀 − 𝑛𝑖

(𝑉𝑖 − ̄𝑉 ),

where we again stress that ̄𝑉 is itself a random variable correlated with 𝑉𝑖, but that 𝜎 is uncorrelated
with 𝑉𝑖 as it is estimated from the autos (for our purposes here, we will treat it as non-random).

The reason for the scaling factor involving 𝑛𝑖 and 𝑀 in our definition of 𝑍𝑖 is that with this factor
the variance of a component 𝒦(𝑍)𝑖 becomes unity (recall that 𝒦(𝑉 )𝑖 itself is a Gaussian variable
with variance 𝜎2/𝑛𝑖). More importantly, the distribution of 𝑍𝑖 is then found to be independent of
𝑖. We will discuss this further below.

We also recall the definition for excess variance as outlined in HERA Memo 123:

𝒦(𝛾) ≡ 𝑆2/⟨𝑆2⟩ = ∑𝑁
𝑖 2𝑛𝑖𝒦(𝑉𝑖 − ̄𝑉 )2

𝜎2(𝑁 − 1) (3)

where we note that this definition specifically concerns only the real/imag part of the visibility, and
is defined in such a way that the mean of the distribution of 𝛾 is unity. We note that 𝛾 is a single
metric describing the combined properties of a set of visibilities – the same set that form the mean.
In contrast, 𝑍𝑖 is defined for a single visibility in the set (but requires defining the full set in order
to calculate it).

The square of this quantity – whether 𝒦(𝑍)2
𝑖 or |𝑍|2𝑖 – forms the basis of all other metrics considered

here.

We can write the excess variance as a function of 𝑍𝑖:

𝒦(𝛾) =
𝑁

∑
𝑖

𝑀 − 𝑛𝑖
𝑀(𝑁 − 1)𝒦(𝑍)2

𝑖 .
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Here, we further define the excess absolute variance:

|𝛾| ≡ ∑𝑁
𝑖 𝑛𝑖|𝑉𝑖 − ̄𝑉 |2
𝜎2(𝑁 − 1) , (4)

where we note that we have removed the factor of two from the numerator (w.r.t. the component-
excess variance), as this will yield a distributional mean of unity (which is more in line with our
label of ‘excess variance’). See below.

We define three more metrics – all of them (weighted) means of 𝑍2
𝑖 over different combinations of

data. We will write each of them below as the mean over |𝑍|2𝑖 , keeping in mind that each of them
can be defined also for a single real/imaginary component.

We define the mean |𝑍|2 over independent data as

̄|𝑍|2 ≡ 1
𝑄

𝑄
∑

𝑗
|𝑍|2𝑗 .

where 𝑄 is the total number of independent measurements of 𝑍𝑖 (this would generally be the excess
variance measured for different non-redundant baselines or channels).

We also define the mean over the |𝑍|2 that form the redundant set:

𝜁2 ≡ 1
𝑁

𝑁
∑

𝑖

𝑀 − 𝑛𝑖
𝑀 |𝑍|2𝑖 ,

where we note the pre-factor.

Finally, we define the mean over 𝜁2 for different non-redundant sets:

̄𝜁2 ≡ 1
∑𝑗 𝑁𝑗

𝑄
∑

𝑗
𝑁𝑗𝜁2

𝑗 .

Note that we don’t define a statistic that involves a partial sum over the redundant set – there is
no analytic form of the distribution for this case, to our knowledge.

1.4 Statistics
1.4.1 Of the Z-score

𝒦(𝑍𝑖) is simply a Gaussian random variable with mean zero and variance (𝑀 − 𝑛𝑖)/𝑀 . To show
this, we first note that it is a sum of Gaussian variables (𝑉𝑖 and ̄𝑉 ), which thus must be Gaussian
itself. Note also that the expectation value is zero since ⟨𝑉𝑖 − ̄𝑉 = ⟨∑ 𝑉𝑗≠𝑖⟩+⟨𝑉𝑖 −𝑉𝑖⟩ = 0. Finally,
the variance may be calculated by considering a single component (e.g. real) and seeing:
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Var [𝒦(𝑉𝑖 − ̄𝑉 )] = Var(𝑀−1
𝑀

∑
𝑗

𝒦(𝑉 )𝑗 + Var [𝒦(𝑉 )𝑖] − 2Cov [𝒦(𝑉 )𝑖,
𝑛𝑖𝒦(𝑉 )𝑖

𝑀 ] (5)

= 𝜎2

2𝑀 + 𝜎2

2𝑛𝑖
− 2 𝑛𝑖

𝑀
𝜎2

2𝑛𝑖
(6)

= 𝜎2

2𝑛𝑖
(1 − 𝑛𝑖

𝑀 ) (7)

= 𝜎2

2𝑛𝑖

𝑀 − 𝑛𝑖
𝑀 . (8)

Thus, we have

Var(𝒦(𝑍𝑖)) = 2𝑛𝑖
𝜎2

𝑀
𝑀 − 𝑛𝑖

𝜎2

2𝑛𝑖

𝑀 − 𝑛𝑖
𝑀 (9)

= 1 (10)

1.4.2 Of 𝑍2
𝑖

We can express 𝒦(𝑍𝑖)2 as

𝒦(𝑍𝑖)2 = 𝑋2,

where 𝑋 is a standard normal variate. Thus 𝒦(𝑍𝑖)2 has the distribution

𝒦(𝑍𝑖)2 ∼ 𝜒2
1 = Γ (1

2, 1
2) .

This has mean 1 and variance 2 (see property (2) above).

Since |𝑍|2 = ℛ(𝑍)2 + ℐ(𝑍)2, we have

|𝑍|2 ∼ Γ (1, 1
2)

1.4.3 Of ̄𝑍2

Here we have a sum of gamma variables:

𝒦(𝑍)2 ≡ 1
𝑄

𝑄
∑

𝑗
Ψ𝑗 Ψ𝑗 ∼ Γ (1

2, 1
2) (11)

Using property (5) above we have

𝒦(𝑍)2 ∼ Γ (𝑄
2 , 𝑄

2 ) .
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In the same way as previous statistics, the absolute visibility squared is

|𝑍|2 ∼ Γ (𝑄, 𝑄
2 ) .

1.4.4 Of the Excess Variance

In HERA Memo 123 we showed that the distribution of 𝒦(𝛾) is a Gamma distribution:

𝒦(𝛾) ∼ Γ (𝑁 − 1
2 , 𝑁 − 1

2 ) .

Since

|𝛾| ≡ ℛ(𝛾) + ℐ(𝛾)
2 ,

we can use property (5) to obtain

|𝛾| ∼ Γ (𝑁 − 1, 𝑁 − 1) ,

which also has unity mean.

1.4.5 Of 𝜁2

Here we note that for 𝒦(𝜁)2 we have

𝒦(𝜁)2 ≡ 1
𝑁

𝑁
∑

𝑖
𝒦(𝑍)2

𝑖 = 1
𝑁

𝑁
∑

𝑖

2𝑛𝑖
𝜎2 𝒦(𝑉𝑖 − ̄𝑉 )2 (12)

= 𝑁 − 1
𝑁 𝒦(𝛾) (13)

Thus, the distribution of 𝒦(𝜁)2 is

𝒦(𝜁)2 ∼ Γ (𝑁 − 1
2 , 𝑁

2 ) .

As in previous statistics, the absolute value is simple:

|𝜁|2 ∼ Γ (𝑁 − 1, 𝑁
2 )
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1.4.6 Of 𝜁2

This is simply the mean of 𝑄 variates of 𝜁2. Setting 𝑃 = ∑𝑄
𝑗 𝑁𝑗, we have

𝒦(𝜁)2 ∼ Γ (𝑃 − 𝑄
2 , 𝑃

2 ) ,

and

|𝜁|2 ∼ Γ (𝑃 − 𝑄, 𝑃
2 ) .

1.4.7 Conditional Distribution

In the process of trying to determine if a particular datum 𝑉𝑖 is “bad” or not, a more powerful
statistic than its raw 𝑍2 score (which depends on itself) is its conditional 𝑍, i.e. the expected
distribution of 𝑍𝑖 given that all the other data are known.

This is simply a Gaussian distribution with

mean = −√2𝑛𝑖
𝜎2

∑𝑗≠𝑖 𝑛𝑗𝑉𝑗
𝑀 − 𝑛𝑖

, (14)

Var = 2. (15)

Thus, forming a new per-visibility statistic:

𝑍𝐶,𝑖 ≡
𝑍𝑖 + √2𝑛𝑖

𝜎2
∑𝑗≠𝑖 𝑛𝑗𝑉𝑗

𝑀−𝑛𝑖√
2

,

we can determine the probability that the visibility 𝑉𝑖 is part of the underlying Gaussian distribution
as determined by the other variables.

Of course, what we have presented here are merely distributions, and they do not say anything
specific about the data without a prior model for how the data could be driven away from the
underlying distribution. That is, to interpret the statistics requires using a Bayesian framework.
Nevertheless, for simplicity, placing a threshold on the retained data in the space of the distributions
here outlined should be sufficient to retain decent data quality.

1.5 Demonstration Plots
Here, we simply demonstrate the veracity of each of the above distributions by drawing monte carlo
samples and comparing.

[2]: import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import gamma
from hera_cal.lst_stack.stats import MixtureModel

The theoretical distributions
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[3]: def zsquare(absolute: bool = True):
return gamma(a=1 / (1 if absolute else 2), scale=2)

def mean_zsquare_over_redundant_set(n: int, absolute: bool = True):
return gamma(a=(n - 1) / (1 if absolute else 2), scale=2 / n)

def mean_zsquare_over_independent_set(q: int, absolute: bool = True):
return gamma(a=q / (1 if absolute else 2), scale=2 / q)

def mean_zsquare_over_redundant_and_independent_sets(nsets: int, ntot: int,␣
↪absolute: bool = True):

return gamma(a=(ntot - nsets)/(1 if absolute else 2), scale=2 / ntot)

def excess_variance(n: int, absolute: bool = True):
return gamma(a=(n - 1) / (1 if absolute else 2), scale=(1 if absolute else␣

↪2) / (n - 1))

MC Sample Generation
[112]: def get_vis(

ndays: int = 10,
ninds: int = 1,
nvars: int = 200000,
weighted: bool = False,
allow_zeros: bool = True,

):
rng = np.random.default_rng()

if weighted:
weights = rng.integers(low=0 if allow_zeros else 1, high=10,␣

↪size=(ndays, ninds, nvars))
weights[:2] = 1 # Ensure at least one day is included
#weights = weights * np.ones((ndays, ninds, nvars))

else:
weights = np.ones((ndays, ninds, nvars))

scale = np.ones_like(weights).astype(float)
scale[weights>0] = 1/np.sqrt(weights[weights>0])

x = rng.normal(scale=scale) + 1j*rng.normal(scale=scale)

return x, weights

def get_samples(
ndays: int = 10,
ninds: int = 1,
nvars: int = 200000,
absolute: bool = True,

8



mean_over_days: bool = False,
mean_over_ind: bool = False,
weighted: bool = True,
allow_zeros: bool = True

):
x, weights = get_vis(ndays, ninds, nvars, weighted, allow_zeros)

avg = np.average(x, axis=0, weights=weights)
m = np.sum(weights, axis=0)
prefac = weights * m/(m - weights)
if absolute:

zsq = prefac * np.abs(x - avg)**2
else:

zsq = prefac * np.abs(x.real - avg.real)**2

n_averaged = np.sum(weights > 0, axis=0)
if mean_over_days:

zsq = np.sum(zsq * (m-weights)/m, axis=0) / n_averaged

if mean_over_ind:
if not mean_over_days:

zsq = np.mean(zsq, axis=1)[0]
else:

zsq = np.mean(zsq, axis=0)
n_averaged = np.sum(n_averaged, axis=0)

else:
if ninds > 1:

raise ValueError("only use ninds>1 if averaging over ind")

n_averaged=n_averaged[0]

return zsq.flatten(), n_averaged

def get_excess_variance(
ndays: int = 10,
nvars: int = 200000,
absolute: bool = True,
weighted: bool = True,
allow_zeros: bool = True

):
x, weights = get_vis(ndays, ninds, nvars, weighted, allow_zeros)
avg = np.average(x, axis=0, weights=weights)

var = np.average((x.real - avg.real)**2, axis=0, weights=weights)

if absolute:
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yvar = np.average((x.imag - avg.imag)**2, axis=0, weights=weights)
var += yvar

excess_var = var * np.sum(weights, axis=0) / (ndays - 1) # Bessel's␣
↪correction, true var is 1

if absolute:
excess_var /= 2

n_averaged = np.sum(weights > 0, axis=0)

return excess_var, n_averaged

[76]: def make_comparison_plot(
ndays: int = 10,
nvars: int = 200000,
ninds: int = 1,
absolute: bool = True,
weighted: bool = False,
allow_zeros: bool = False,
excess_variance: bool = False,
mean_over_redset: bool = False,
mean_over_indset: bool = False,
lbl=None,
color='C0'

):
if allow_zeros and (mean_over_indset or not mean_over_redset):

raise ValueError("allow_zeros = True only supported for mean over␣
↪redset only")

if excess_variance:
zsq, n = get_excess_variance(absolute=absolute, ndays=ndays,␣

↪ninds=ninds, weighted=weighted, nvar=nvars)
dist = excess_variance(absolute=absolute, n=ndays)

else:
zsq, n = get_samples(

ndays = ndays,
ninds = ninds,
nvars = nvars,
absolute = absolute,
mean_over_days=mean_over_redset,
mean_over_ind = mean_over_indset,
weighted = weighted,
allow_zeros = allow_zeros

)

if mean_over_redset:
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if mean_over_indset:
dist =␣

↪mean_zsquare_over_redundant_and_independent_sets(nsets=ninds, ntot=n[0],␣
↪absolute=absolute)

label=r"$\overline{|\zeta|^2}$" if absolute else␣
↪r"$\overline{\mathcal{K}(\zeta)^2}$"

else:
if allow_zeros:

unique_n, counts = np.unique(n, return_counts=True)
indx = np.argwhere(unique_n >= 2)[:, 0]
unique_n = unique_n[indx]
counts = counts[indx]
dist = MixtureModel([mean_zsquare_over_redundant_set(n=nn,␣

↪absolute=absolute) for nn in unique_n], weights=counts)
label=r"$|\zeta|^2$ (non-uniform)" if absolute else␣

↪r"$\mathcal{K}(\zeta)^2$ (non-uniform)"
else:

dist = mean_zsquare_over_redundant_set(n=n[0],␣
↪absolute=absolute)

label=r"$|\zeta|^2$" if absolute else␣
↪r"$\mathcal{K}(\zeta)^2$"

elif mean_over_indset:
dist = mean_zsquare_over_independent_set(q=ninds, absolute=absolute)
label=r"$\bar{|Z|^2}$" if absolute else r"$\bar{\mathcal{K}(Z)^2}$"

else:
dist = zsquare(absolute=absolute)
label=r"$|Z|^2}$" if absolute else r"$\mathcal{K}(Z)^2$"

xx = np.logspace(np.log10(zsq.min()), np.log10(zsq.max()), 100)

plt.hist(zsq, density=True, bins=50, histtype='step', label=lbl,␣
↪color=color)

plt.plot(xx, dist.pdf(xx), color=color, ls='--')
plt.yscale('log')

plt.title(f"PDF of {label}")

[6]: fig, ax = plt.subplots(1, 1)

make_comparison_plot(
ndays=10,
absolute=True,
weighted=True,
lbl='absolute',
color='C0'
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)

make_comparison_plot(
ndays=10,
absolute=False,
weighted=True,
lbl='real part',
color='C1'

)

plt.legend()
plt.ylim(1e-7, 1e1);

[74]: fig, ax = plt.subplots(1, 2, constrained_layout=True, figsize=(12, 6))

plt.sca(ax[0])
for i, N in enumerate((2, 3, 8, 20)):

make_comparison_plot(
ndays=N,
absolute=True,
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weighted=True,
mean_over_redset=True,
lbl=f'N={N}',
color=f'C{i}'

)
ax[0].legend()

plt.sca(ax[1])
for i, N in enumerate((2, 3, 8, 20)):

make_comparison_plot(
ndays=N,
absolute=False,
weighted=True,
mean_over_redset=True,
lbl=f'N={N}',
color=f'C{i}'

)

[77]: fig, ax = plt.subplots(1, 2, constrained_layout=True, figsize=(12, 6))

plt.sca(ax[0])
for i, N in enumerate((3, 8, 20)):

make_comparison_plot(
ndays=N,
ninds=N,
nvars=200000//N,
absolute=True,
weighted=True,
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mean_over_redset=True,
mean_over_indset=True,
lbl=f'N={N}',
color=f'C{i}'

)
ax[0].legend()

plt.sca(ax[1])
for i, N in enumerate((3, 8, 20)):

make_comparison_plot(
ndays=N,
nvars=200000//N,
ninds=N,
absolute=False,
weighted=True,
mean_over_redset=True,
mean_over_indset=True,
lbl=f'N={N}',
color=f'C{i}'

)

[78]: fig, ax = plt.subplots(1, 2, constrained_layout=True, figsize=(12, 6))

plt.sca(ax[0])
for i, N in enumerate((3, 8, 20)):

make_comparison_plot(
ndays=N,
ninds=N,

14



nvars=200000//N,
absolute=True,
weighted=True,
mean_over_redset=False,
mean_over_indset=True,
lbl=f'N={N}',
color=f'C{i}'

)
ax[0].legend()

plt.sca(ax[1])
for i, N in enumerate((3, 8, 20)):

make_comparison_plot(
ndays=N,
nvars=200000//N,
ninds=N,
absolute=False,
weighted=True,
mean_over_redset=False,
mean_over_indset=True,
lbl=f'N={N}',
color=f'C{i}'

)

[118]: fig, ax = plt.subplots(1, 2, constrained_layout=True, figsize=(12, 6))

plt.sca(ax[0])
for i, N in enumerate((3, 4, 8)):
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make_comparison_plot(
ndays=N,
absolute=True,
weighted=True,
mean_over_redset=True,
allow_zeros=True,
lbl=f'N={N}',
color=f'C{i}'

)
ax[0].legend()

plt.sca(ax[1])
for i, N in enumerate((3, 4, 8)):

make_comparison_plot(
ndays=N,
absolute=False,
weighted=True,
allow_zeros=True,
mean_over_redset=True,
lbl=f'N={N}',
color=f'C{i}'

)
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