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Abstract

This note outlines how the HERA DPSS/least-squares fringe-rate filter is implemented. We discuss the moti-
vation for using DPSS functions to implement a bandpass (tophat-like) filter in the fringe-rate domain; define the
DPSS basis functions mathematically; and describe the procedure for fitting the functions to data in order to do
the filtering. The filtering code itself is provided by the hera filters package, and much of the complexity is
related to choosing how many DPSS modes to fit, and what method to use to find the ‘best fit’ to any given set of
input data.

Overview

We are trying to implement a tophat filter in fringe-rate space – In broad outline, the HERA DPSS fringe-rate filter
(FRF) implementation is intended to apply a flat (tophat) bandpass filter, which leaves some fringe-rate modes in the
data intact, and excises others completely. At the moment, there is no attempt to implement a ‘shaped’ or ‘weighted’
filter that would apply a primary beam weighting for instance – all we care about for now is keeping or removing each
FR mode. When we talk about the ‘mainlobe’ or ‘notch’ filters, we are always talking about keeping (or removing) all
FR modes in some range; the ‘mainlobe’ filter doesn’t mean that we are applying weights determined by the shape of
the beam for example, only that we are using the shape of the mainlobe to define a range of fringe rates for the tophat.

Why not do a tophat filter in fringe-rate directly? – If we were to implement a tophat filter directly in FR space,
we would see ringing on transforming back to the time domain. Instead, we can implement something that is close to
a tophat filter, in the sense that it mostly only affects the modes inside the range defined by the tophat function, but
which also reduces ringing in the time domain (i.e. doesn’t scatter power to large separations in time). The functions
that have the property of being ‘maximally concentrated’ in both the time and FR domains are the DPSS (Discrete
Prolate Spheroidal Sequence) functions.

Relationship between DPSS functions and the tophat filter – The DPSS functions are defined with reference to a
finite band within which we want to maximally concentrate the power of the function (i.e. we want to minimise the
leakage of power outside this region). The concentration ratio of the function X in the fringe-rate domain is defined
as

λ =

∫ fc+∆f

fc−∆f
|X(f)|2df

/∫ fmax

fmin

|X(f)|2df, (1)

where we have defined the tophat region as fc −∆f ≤ f ≤ fc +∆f . Maximising this quantity, we obtain the first
DPSS mode for this particular tophat function. We can then construct an orthonormal basis of DPSS functions by
finding the next function that maximises λ while also being orthogonal to the first function, and so on. This procedure
gives us a set of basis functions that keep as much of their power within the tophat band in the FR domain as possible.
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Figure 1: (Left column): Real part of the DPSS operator basis functions as a function of (normalised) time, for a
given number of samples nf , time sample duration, δt, and tophat window half-width ∆f , and centre fringe rate fc.
We have chosen fc = 0 for this example, so there is no imaginary part. (Right panel): Real part of the fringe-rate
transform of the DPSS functions. The grey region shows the bounds of the tophat function.
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Definition of the DPSS basis functions – We can define a matrix operator that has a DPSS basis function in each
column,

Aij = e2πi(ti−tc)fc Dj(ti; ∆ = nf δt∆f), (2)

where ti is the time for sample i, tc is the time at the centre of the observation period (of duration ∆t), fc is the fringe
rate of the centre of the tophat filter, and Dj is the j’th DPSS function for a band with nf regularly-spaced samples
and half-bandwidth ∆, defined as the product of nf , the time sample duration δt, and tophat half-width ∆f . Note
how the complex exponential is just a phase factor that depends on the tophat centre, fc.

What do the DPSS basis functions look like? – Fig. 1 shows a set of DPSS modes (as defined in Eq. 2) for a
given observing window, time sample duration, and tophat window centre and width. We have used ∆t = 6 hours,
δt = 108.5 sec (nf = 200), fc = 0 mHz, and ∆f = 0.5 mHz for this example. The upper-left panel shows the
lowest-order modes, which are concentrated near the centre of the observing time interval and taper nicely at the
interval edges. Higher-order modes have more weight towards the edges, and the highest-order ones shown (bottom-
left panel) are non-zero at the edges.

Projecting a data vector onto the DPSS modes – We can project a data vector onto our set of DPSS basis functions
simply by doing (note Einstein summation convention)

cj = A†
ijdi, (3)

where di is the element of a complex data vector for time sample i, cj is the complex coefficient for DPSS mode j,
and † denotes complex conjugation. Transforming a set of DPSS coefficients back to the time domain is achieved by
doing

yi = Aijcj . (4)

We will typically only work with the leading order DPSS modes, up to some maximum order N , so projecting onto
the DPSS modes and then back again will be lossy, i.e. y⃗ = AA†d⃗ ̸= d⃗.

Linear least squares solution – If we only use N < Nmax of the DPSS modes, and/or the data have missing values
due to flagging, the DPSS basis as defined above is no longer complete and orthogonal with respect to our data, and
so there is no unique way of arriving at a set of coefficients cj . Instead, we must choose some method of defining a
‘best-fit’ set of coefficients that has sensible properties.

A common way of doing this is to find the least-squares solution ĉj to the equation A†
ijcj = bi, where we would

ideally define bi ≡ N−1
ik dk to incorporate an inverse noise covariance weighting of the data, but in reality will usually

just use the data itself, bi ≡ di. The generalised linear least-squares solution is

ĉj =
(
A†N−1A

)−1
A†N−1d⃗, (5)

which for unweighted data (N = I) reduces to

ĉj =
(
A†A

)−1
A†d⃗. (6)

The (unweighted) linear least-squares DPSS filtered data can then be written as

d⃗FRF = A
(
A†A

)−1
A†d⃗ = AA†d⃗, (7)

where the second equality follows from the orthonormality of the DPSS modes, i.e. A†A = I .

HERA implements this least squares solution in the function hera filters.dspec. fit basis 1d, using the
scipy.optimize.lsq linear function. The A operator that contains the DPSS basis functions is generated by
the function hera filters.dspec.dpss operator. Time flags are included in the solve, i.e. missing time
samples are accounted for in this method.
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Figure 2: (Left panel): Real and imaginary coefficients of 24 DPSS modes that were fit to some made-up data
consisting of arbitrary smooth functions plus complex white noise, for the same tophat filter as in Fig. 1. (Right
panel): The made-up data (faint lines) with the filtered solution overplotted (darker lines). The FR filter is centred
around f = 0 mHz, so is a low-pass filter; the filtered lines are clearly smoother, as expected.

Example application – The filter defined for Fig. 1 is a low-pass filter, centred on a fringe rate f = 0 mHz, with
half-width ∆f = 0.5 mHz. As an illustration, we have applied this filter to some made-up complex data that is a
combination of smooth functions of time plus complex white noise, shown in the right-hand panel of Fig. 2. There
are no flags/missing data. We applied the filter manually, using a simple projection AA†d⃗ (red/blue solid lines) and
the scipy linear least-squares function (black dashed lines).

To generate the A matrix, we used the hera filters.dspec.dpss operator function with keyword argu-
ment eigenval cutoff set to 1e-2. This argument was used to determine how many DPSS modes to include in
the matrix operator. 24 modes were included in total, which is significantly less than the total number of time samples
in the data (200). Clearly, only structure that is smooth in time has survived the filtering, as expected.

Fig. 3 shows power spectra of the filtered and unfiltered data. The grey area centred around f = 0 mHz marks the
tophat filter region. In this instance, the DPSS filter has quite accurately recovered the structure of the data at low
delay, with a long tail of increasing power suppression outside the tophat filter region. A strict tophat filter would
perfectly match the unfiltered data inside the grey region, and be exactly zero outside the grey region.

Selecting the number of modes to retain – The dpss operator function provides several ways of selecting how
many DPSS modes to retain to perform the filtering. Retaining more modes makes for a sharper transition around the
boundary of the tophat region, but the higher-order modes also have lower concentration ratios.

The bottom panel of Fig. 3 shows how the filtered power spectrum changes as more DPSS modes are included.
Retaining only one mode gives excellent suppression of power outside the tophat region, but loses a substantial
fraction of the signal within the tophat region too, with even the centre of the filter (at f = 0 mHz) showing significant
suppression. As more modes are retained, the recovery of the signal within the tophat region improves rapidly, with
the centre of the filter being recovered better than the edges. The suppression in the region outside the tophat rapidly
degrades however, as higher-order modes are less concentrated and so necessarily add power outside the tophat.
Comparing with the fringe-rate profiles in Fig. 1, we also see that sufficiently high-order modes start to show features
outside the tophat window, causing artifacts in the power spectrum immediately outside the tophat region.

In our example, N ≃ 25 is sufficient to accurately recover the signal in the tophat region right up to the tophat
boundary. This comes at the cost of there being much less suppression of power outside the tophat window, to the
point that at some fringe rates, the ‘filtered’ signal is actually above the input signal. The signal power outside the
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Figure 3: Fringe-rate power spectra of the unfiltered and filtered data. The shaded area shows the tophat filter region.
The upper panel shows the result for the example described above that has 24 terms. The lower panel shows the result
for filters with different numbers of terms.

tophat is very unlike the input data, and so could be interpreted as an error component rather than a filtered version of
the input signal (see the next section for a discussion).

Several options are available to automatically determine how many modes to return based on the tophat that is being
applied:

• nterms: Set the number of modes to retain manually.

• eigenval cutoff: Do a cut on the eigenvalues of the matrix used to generate the DPSS modes. This should
be equivalent to doing a cut on the concentration ratio of the modes.

• edge suppression: Chooses the number of modes based on how much suppression would be achieved to
a tone at the edge of the filter.

• avg suppression: Similar to edge suppression, but based on an average of the suppression for all
the tones inside the filter instead.
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Power outside the tophat region – Note that the DPSS filter (as implemented here) is not acting as a straightforward
multiplicative fringe-rate filter in the region outside the tophat. The power in the filtered signal that is seen in Fig. 3
does not have a similar shape to the input data in this region of fringe-rate space. Instead, we can interpret the power
outside the tophat window as an artifact caused by the ‘tails’ of the DPSS modes that are being used to fit the signal
inside the window. These tails get heavier with increasing order of the DPSS functions, and eventually the highest
order DPSS modes become more concentrated outside the window than inside. Retaining more DPSS modes tends to
increase the amplitude of the filtered signal outside the window, as seen in Fig. 3.

Focusing on the case where only lower-order DPSS modes are retained, these tails give the filtered signal outside
the window a sort of ‘non-local’ property – the amplitude of the low-order DPSS modes inside the window sets the
amplitude of the filtered signal outside the window, while it is relatively insensitive to what the actual input signal
outside the window is doing.
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